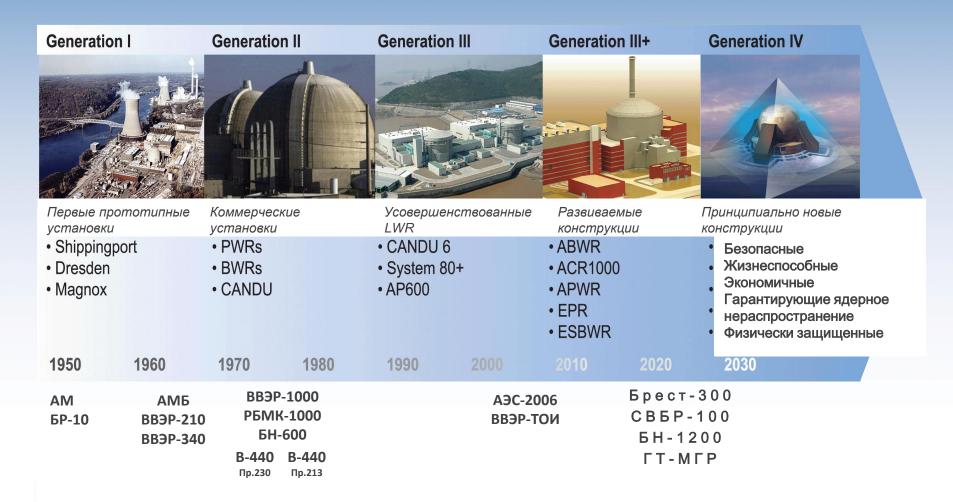


Инновационные технологии в атомной отрасли

Рисованый В.Д., заместитель генерального директоранаучный руководитель физико- энергетического блока ЗАО «Наука и инновации» ГК «РОСАТОМ», д.т.н., профессор

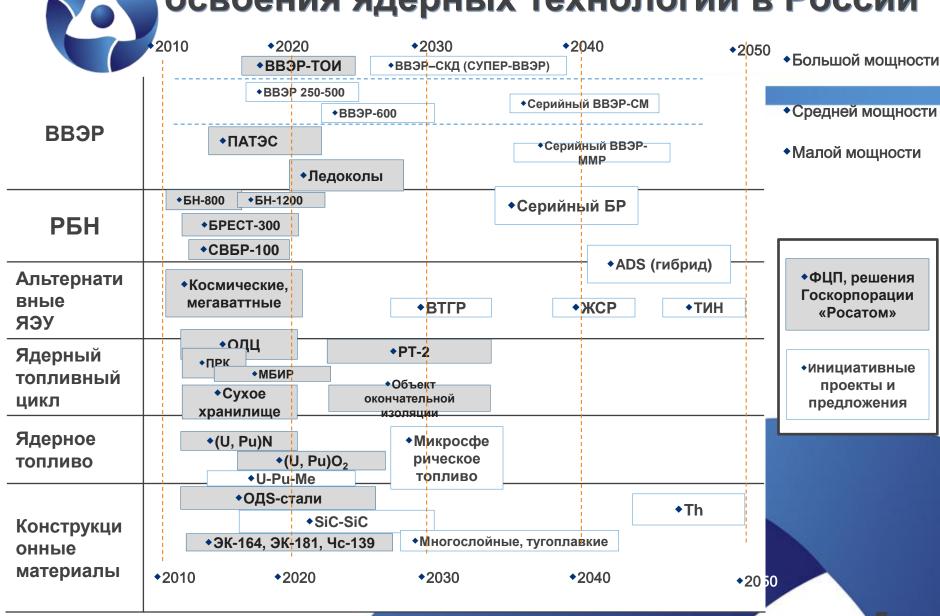


Некоторые приоритетные направления инновационного развития РОСАТОМА

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

- -3ЯТЦ с БН и ВВЭР
- -ЯЭУ средней и малой мощности
- -Материалы и технологии нового поколения
- -Электроэнергетические системы и комплексы на основе ВТСП
- -Аддитивные технологии
- -Новая аппаратно- программная платформа
- -Ядерная медицина

Поколения ядерных реакторов



Развитие атомной энергетики России

Дорожная карта освоения ядерных технологий в России

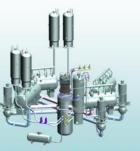
Ядерные реакторы в мире и России

Корпусные водоохлаждаемые реакторы в мире

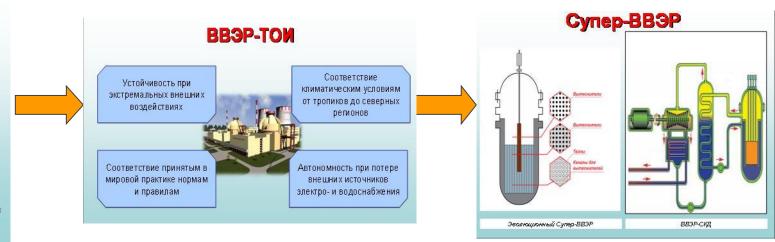
ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

Наибольшего успеха человечество добилось, сконцентрировавшись на одной реакторной технологии, сделав ее наиболее продвинутой и накопив наибольший объем знаний и опыта. Это корпусные водоохлаждаемые реакторы, которые сегодня (с учетом морской энергетики, эксклюзивно использующей реакторы PWR) составляют более 90% реакторного парка мира.

	Тип реактора	Число реакторов	Суммарная мощность, ГВт(э)	Доля в мировом реакторном парке, %	Число стран, где эксплуати- руются
	PWR	220	215,5	57,9	17
	BWR	84	77,7	20,9	10
	ввэр	53	35,9	9,6	10
E	Корпусные водоохлажда- емые	357	328,7	88,4	28
_	Другие (PHWR, CR, PБМК, FBR)	80	43,1	11,6	10



Развитие водо-водяных технологий в ядерной энергетике России


POCATOM

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

A3C - 2006

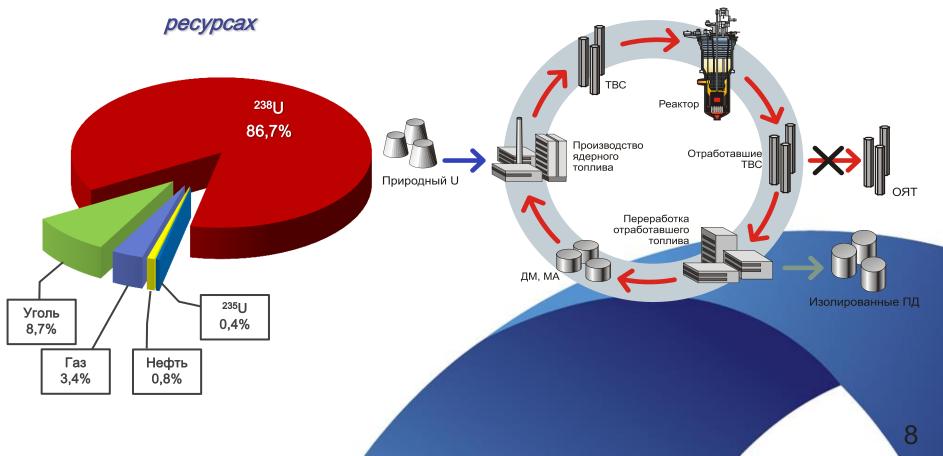
Проект ВВЭР-1200 для АЭС-2006 сооружается в настоящее время на площадках НВАЭС-2, ЛАЭС-2 и Балтийской АЭС

Реакторы ВВЭР средней мощности

Реакторы ВВЭР малой мощности

Использование освоенных технологий судовых ядерных реакторов

Опыт эксплуатации более 460 реакторов с общим сроком службы более 6500 реакторо-лет


Новая технологическая платформа ядерной энергетики

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

Относительная доля энергии

в природных топливных

Замыкание ядерного топливного цикла

Оценка мирового рынка ядерной медицины

0,5 млрд.\$

2,5 млрд.\$

9 млрд.\$

11 млрд.\$

Производство радиоизотопов Разработка и производство РФП

Инжиниринг (оборудование, логистика, сервис, отходы, кадры Медицинские услуги

Научно-технический потенциал Росатома по производству радиоизотопов в исследовательских ядерных реакторах

«РОСАТОМ» и ЭНЕРГИИ «РОСАТОМ»

• 7 исследовательских ядерных реакторов

POCATOM

- Защитное оборудование для радиохимической переработки облученных материалов и выделения целевых нуклидов
- Установки для изготовления закрытых источников излучения
- Лабораторное исследовательское оборудование
- >5000 научных и инженерно технических работников

Действующие производства – результат внедрения многолетних научно- исследовательских разработок

POCATOM

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

ОАО «ГНЦ НИИАР» — производство изотопов далеких трансурановых элементов, включая ²⁵²Cf, ⁹⁹Mo

ОАО «ИРМ» - производство ¹⁴С, включая продукты вторичного передела



ГНЦ «РФ ФЭИ» - производство ²⁴¹Am и источников на его основе, ²²⁵Ac, ряда РФП

ОФ НИФХИ им. Л.Я.Карпова – производство 99Мо, ряда РФП

География поставок радионуклидной продукции

- Франкфурт
- Мюнхен
- **◆**Брюссель
- **◆**Ганновер
- Алматы
- Чикаго
- •Ханой
- •Мельбурн

- •Пекин
- Шанхай
- Сеул
- Осака
- **◆ Токио**
- •Лос-Анджелес
- •Портленд
- **•**Буэнос-Аирес

- **◆**Нью-Йорк
- ◆Стамбул
- •Прага
- *◆Будапешт*
- >Варшава
- **У**Ельсинки
- *▶Ванкувер*
- **◆**Цюрих

Российский рынок радионуклидной продукции медицинского назначения

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

- Экспорт 35 млн.\$США (более 80% от объема производства)
- К российскому радионуклидному сырью у мирового рынка доверие есть, но отсутствует современное производство РФП
- Создание доверия мирового рынка к российским РФП возможно при наличии отлаженной системы производства и сбыта РФП внутри страны
- Из 130 диагностических медицинских тестов с радионуклидами, применяемых в мире, в России используются только 30

Три перечня радионуклидов США

POCATOM

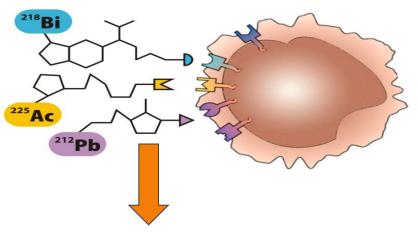
ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

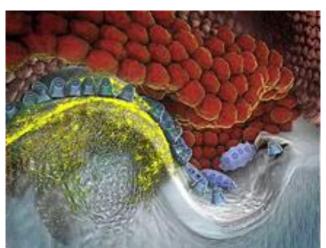
- 1.Клиническая эффективность доказана, но могут быть сбои в поставках или изменении цен (Мо-99, Y-90, Re-186, In-111, I-123)
- 2.Применимость доказана, но производство и использование сдерживается из-за малых объемов производств и (или) высокой стоимости (Sr-89, I-125, I-131, Sm-153, Sn-117m, Pd -103, Ks-127, P-32, Kr-81m)
- 3.Перспективные для диагностики и лечения, но отсутствуют или высокая цена (Sc -47, Cu-62, Cu-, Cu-67, Ge-153, 166, Lu-177, Re- 188, At-211, Bi-212, Bi-213, Ac-225, Ra-224, Ra-223)

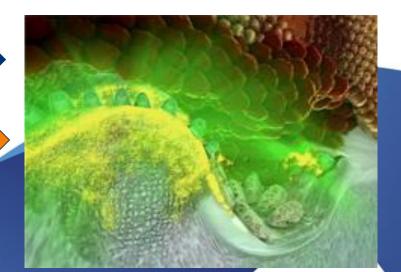
Самые востребованные реакторные радионуклиды для медицины:

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

в закрытых источниках: ⁶⁰Co, ¹⁹²Ir, ¹²⁵I, ¹⁰³Pd, ¹³¹Cs, ¹⁶⁹Yb, ²⁵²Cf


исследуются: ¹⁷⁷ Lu, α-излучатели




Новые разработки с применением радиоизотопов

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

• α - эмиттеры для ядерной медицины (²¹⁸Ві, ²²⁵Ас, ²¹²Рb)

Производство РФП на базе филиала ОАО «НИФХИ им. Л.Я. Карпова»

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

◆ «Торячие қамеры

Цех зарядки генераторов технеция-99т по требованиям **GMP**

РОСАТОМ ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»



Комплекс нейтронной и нейтронзахватной терапии на ядерном реакторе ВВР-ц

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

- •Подготовлена проектно-сметная документация комплекса
- Изготовлена часть специализированного оборудования

Радиационная стерилизация

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

- В индустриальных странах (40-50)% медицинской продукции подвергается радиационной обработке, в основном на гамма- установках
- Мощность используемых источников Со-60 составляет (20-100) кКи
- Радиационная стерилизация лекарственных препаратов дозой 2,5 кГр принята во многих странах, включая разрешения Минздрава РФ

2.Осипов В.Б. Радиационная стерилизация лекарств//Хим. высоких энергий 1985.-19№3,с.241-249

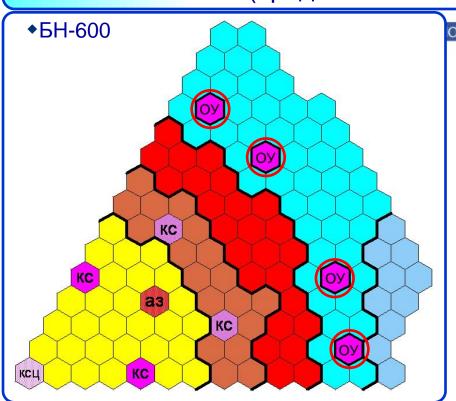
^{1.}Philips G.O. Radiation technology in surgery and pharmaceutical mousery// IAEA Bbll-1994.-36#1/-P.19-23

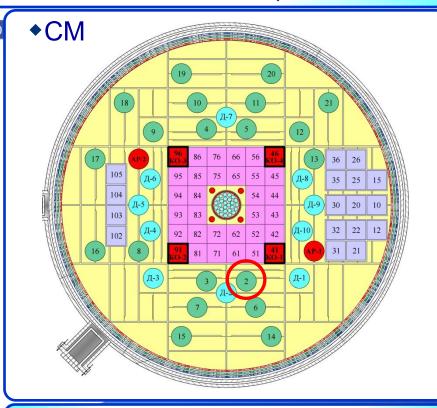
Гамма- источники на основе радионуклидов Eu для стерилизации лекарств, медицинского оборудования и материалов

Характеристики	Co-60	Cs-137	Eu-154
Форма источника	металл	CsCl	Металл или оксид
Энергия, МэВ	1,17 и 1,33	0,66	0,8
Время полураспада, лет	5,26	30,18	13,5
Удельная активность, Ки/г	70-100	20-25	50-70
Сечение поглощения тепловых нейтронов, барн	36 (Co-59)	-	7700(Eu-151)
Время для наработки 50Ки/г в тепловом спектре нейтронов	300-600	-	40-60

POCATOM

Производство источников на основе Со-60 для стереотаксической лучевой терапии


«РОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»



Сравнение возможностей облучений в СМ и БН-600(800)

◆НФХ (средние по высоте активной части ОУ)

- ◆2-й ряд стального бокового экрана
- ◆ΠΠΗ ~1,1·10¹⁵ cm⁻²c⁻¹
- ◆ σ(⁵⁹Co(n,g)) ⁶⁰Co = 5-6 барн

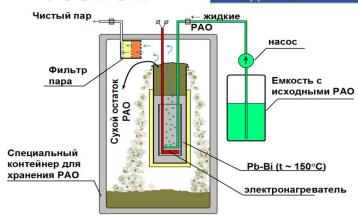
- Канал №2 (ближайший к а.з.)
- ◆ΠΠΗ ~4,3·10¹⁴ cm⁻²c⁻¹
- ◆σ(⁵⁹Co(n,g)) ⁶⁰Co = 37 барн

Многофункциональный мобильный лазерный технологический комплекс МЛТК-30М

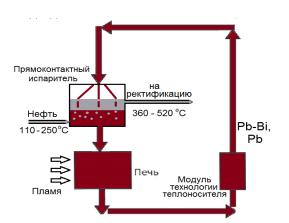
«РОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

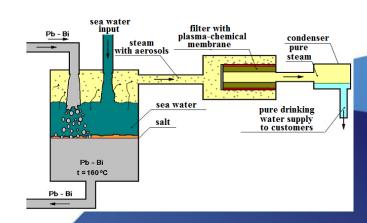
Решаемые задачи

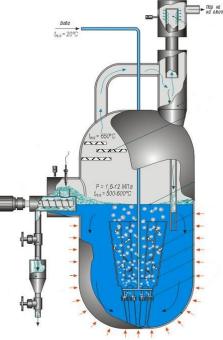
• Ликвидация аварий на нефтяных и газовых скважинах при неконтролируемых выбросах, пожарах – дистанционное (до 100м) отрезание устьевой арматуры, измельчение



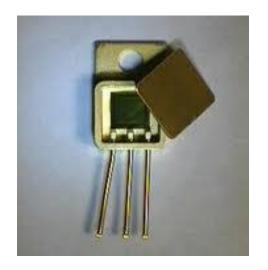
Переработка широкого класса жидкостей (солевых растворов, углеводородов, отходов производства, включая радиоактивные)


POCATOM


«РОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»



- •Бытовой, промышленный,
- трудный мусор


Источник тока на основе радионуклида Ni-63 с

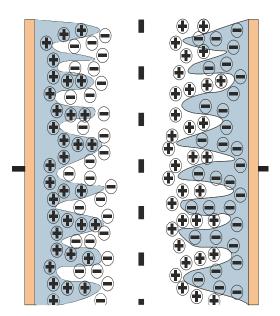
длительностью работы более 50 лет

POCATOM

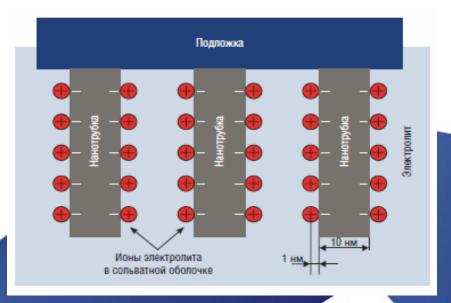
ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РО

- ◆Военное применение:
- •Высокоточное оружие;
- •Навигационные комплексы;
- •Радиоэлектроника.

- ◆Гражданское применение:
- •Медицина;
- •Имплантанты, протезы, кардиостимуляторы, слуховые аппараты;
- •Микроэлектроника;
- ◆Космическоеприменение:
- •Спутники;
- •Дублирующие системы;
- •Навигационое оборудование;


Суперконденсатор на основе УНТ

POCATOM


ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

Суперконденсатор или ионистор - конденсатор, накапливающий энергию в двойном электрическом слое на поверхности высокопористой проводящей структуры. Обладает значительно большей емкостью по сравнению с обычными конденсаторами

Схема суперконденсатора

Обкладка суперконденсатора на УНТ, с двойным слоем 1 нм.

