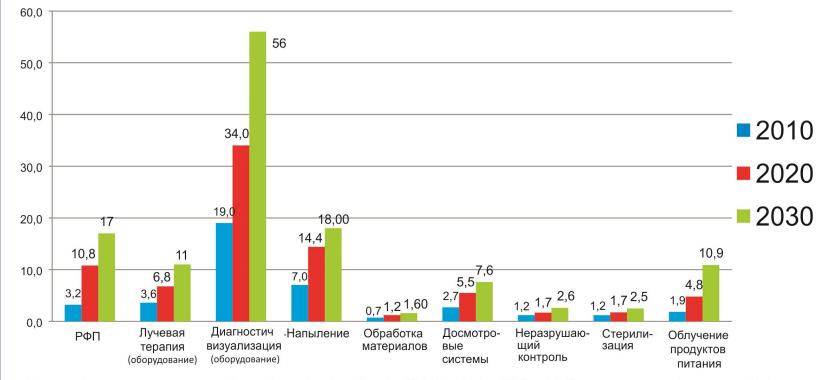


Цыгвинцев Павел Николаевич

Зав.лаб. ФГБНУ ВНИИРАЭ

Первые исследования активно проводились: в Институте микробиологии АН СССР, Институте биофизики АН СССР и во Всесоюзном научно-исследовательском институте консервной и овощесушильной промышленности (Мейсель М.Н., Черняев Н.Д. Научные и практические вопросы лучевой стерилизации и пастеризации. Вестник АН СССР, №11, 1956. С.38-45.).

Перечень облученных продуктов, допущенных МЗ СССР для питания (Метлицкий Л.В., Рогачев В.И., Хрущев В.Г. Радиационная обработка пищевых продуктов. М.: Экономика, 1967. 160 с.)


	Наименование продуктов	Назначение облучения	Доза, Гр	Дата выдачи разрешения
	Картофель	Подавление прорастания клубней	100	14 марта 1958 г.
	Репчатый лук	Подавление прорастания	60	25 февраля 1967 г.
	Зерно	Дезинсекция	300	1959 г.
	Сушеные фрукты	Дезинсекция	1000	15 февраля 1966 г.
	Сухие пищевые концентраты	Дезинсекция	700	6 июня 1966 г.
	Свежие плоды и овощи (опытные партии)	Подавление микроорганизмов для удлинения срока хранения (радуризация)	2000-4000	11 июля 1964 г.
	Сырые мясные полуфабрикаты из говядины, свинины и кроликов, упакованные в пленки (опытные партии)	Подавление микроорганизмов для удлинения срока хранения (радуризация)	6000-8000	11 июля 1964 г.

Прогноз до 2030 года - активный рост "традиционных" и открытие новых масштабных рынков применения РТ

Стабильный рост традиционных рынков применения РТ, в том числе за счет выхода на рынок новых решений для сложившихся рынков

Сформируются новые рынки, в первую очередь, под влиянием «экологической» повестки — очистка газов, переработка мусора, очистка сточных вод и др.

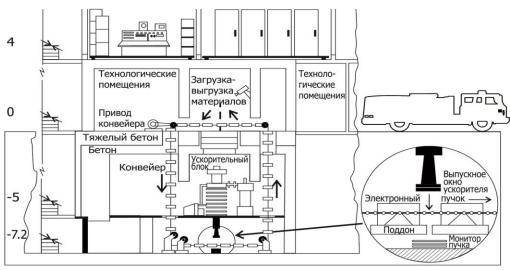
Источник: Центр стратегических разработок «Северо-Запад» на базе GIA, TriMark Publications LLC, Frost&Sullivan, итоговых ежегодных отчетов Varian, IBA, Siemens (2010-2011), докладов ОЕСD/NEA, докладов МАГАТЭ (IAEA).

Промышленные радиационные установки в странах-членах СНГ

Страна	Технология	Организация
Азербайджан	Планируется проект создания промышленной гамма-установки для обработки продовольственных товаров, стерилизации медицинских изделий	Институт радиационных проблем НАН Азербайджана
Беларусь	Промышленная установка по радиационной обработке медицинской, сельскохозяйственной и промышленной продукции с ускорителем электронов УЭЛВ-10-10	ГНУ «СИЭиЯИ- Сосны» НАН Беларуси и ЧУП «Радмедтех»
Казахстан	Промышленная установка с ускорителем электронов ЭЛВ-4 по производству сшитого кровельного материала, фармпрепаратов, сшитого пенополиэтилена, радиационной стерилизации. Планируется выпуск манжет и изоляции для нефтегазопроводов. В проекте установка с ускорителем ИЛУ-10	Парк ядерных технологий г. Курчатов
Россия	4 гамма-установки и 18 установок с ускорителями электронов , работающих в области медицинской промышленности (стерилизация, деконтаминация фармсырья), обработки пищевой продукции (пряности, специи, сезонные сухие травы и т.п.), а также околао установок с ускорителями электронов для модификации полимерных материалов, кабелей, труб,	Частные фирмы, институты РАН, ФМБА, Росатома —в 17 городах РФ
Украина	Установки с ускорителями электронов для стерилизации медицинской и обработки пищевой продукции, упаковочных материалов, модификации полимерных материалов	Харьковский ГУ, ХФТИ, ИЭФи РТ

Глобальная ситуация с применением лучевой обработки продуктов питания и использованием РТ в сельском хозяйстве

~70% центров облучения продуктов питания расположены в США и Китае


	Функция	Доза (кГр)	Облученные продукты		
	Низкая доза (до 1 кГр)				
	Задержка прорастания	0,05 – 0,15	Картофель, лук, чеснок, корнеплоды, имбирь и т.п.		
	Уничтожение насекомых-вредителей	0,15 – 1,0	Зерно, крупы, мука,орехи, и т.п.		
	Задержка созревания фруктов	0,2 – 1,0	Свежие фрукты		
	Средняя доза (1 – 10 кГр) (Радисидация, радуризация)				
1	Увеличение срока годности	0,5 – 3,0	Фрукты, овощи, мясо, мясной фарш, полуфабрикаты		
	Инактивация и/или уничтожение различных м/о и паразитарных организмов	0,3 – 6,0	Пищевая продукция животного и растительного происхождения		
•	Снижение численности микроорганизмов в специях и других сушенных инградиентах	5 - 10	Специи, сушенные пищевые инградиенты		
,	Высокая доза (10 – 50 кГр) (Радаппертизация)				
	Производство микробиологически стабильной пищевой продукции с использованием тепловой инактивации и от	30,0 – 50,0	Мясо, птица, фарш, морепродукты, готовая пища, стерилизованные больничные диеты		

Для радиационной обработки пищевых продуктов разрешено применять (Кодекс Алиментариус. Облученные продукты питания. ФАО/ВОЗ, 2007.):

- 1. электронное излучение с энергией не более 10 МэВ.
- 2. γ -излучение 60 Co (T1/2=5,27 года, E=1,25 МэВ) и 137 Cs (T1/2=30,17 года, E=0,66 МэВ).
- 3. тормозное излучение, генерируемое ускорителями с энергией не более 5 МэВ.

Эффективность радиационных технологий в сельском хозяйстве и пищевой промышленности

- *разработаны* научные основы применения радиационных технологий;
- выявлены оптимальные режимы облучения специй и зерна для сокращения потерь при хранении от насекомых-вредителей, грибков и микроорганизмов;
- показана эффективность радиационной обработки многокомпонентных пищевых продуктов, готовых к употреблению (рыбных пресервов);
- выявлена эффективность действия разных доз ионизирующих излучений для задержки прорастания картофеля и увеличения сроков хранения.

без облучения

облученные

Общее состояние нормативно-правовой базы и источники её развития в России

Не принят закон «О продовольственной безопасности» с разделом об облучении пищи;

В законе «О качестве и безопасности пищевых продуктов» нет раздела об облучении пищи;

В проекте Технического регламента « О безопасности пищевой продукции» нет раздела об облучении пищи;

Официально не введены положения Международного кодекса об облучении пищи - раздела CAC/RCP 19-1979, Rev. 2-2003, и основного стандарта CODEX STAN 106-1983, REV. 1-2003;

Отсутствуют национальные стандарты, соответствующие международным стандартам по облучению пищи и с/х продукции, стандарты контроля облученной пищи неполны;

В 2015 г. утвержден нормативный документ - ГОСТ ISO 14470-2014 «Радиационная обработка пищевых продуктов»;

Стимулы развития НПР существуют: Поручение Президента РФ от 19.06.2010 г. п.9 по принятию в РФ международных стандартов ФАО, ВОЗ

Основной источник - международные стандарты, кодексы и правила, прошедшие апробацию в 57 странах, и доказавшие свою актуальность, полезность и необходимость

Европейские Директивы 1999/2/ЕС, 1999/3/ЕС

Кодексы Федерального регулирования США CFR Title 21, Section 179.25,179.26