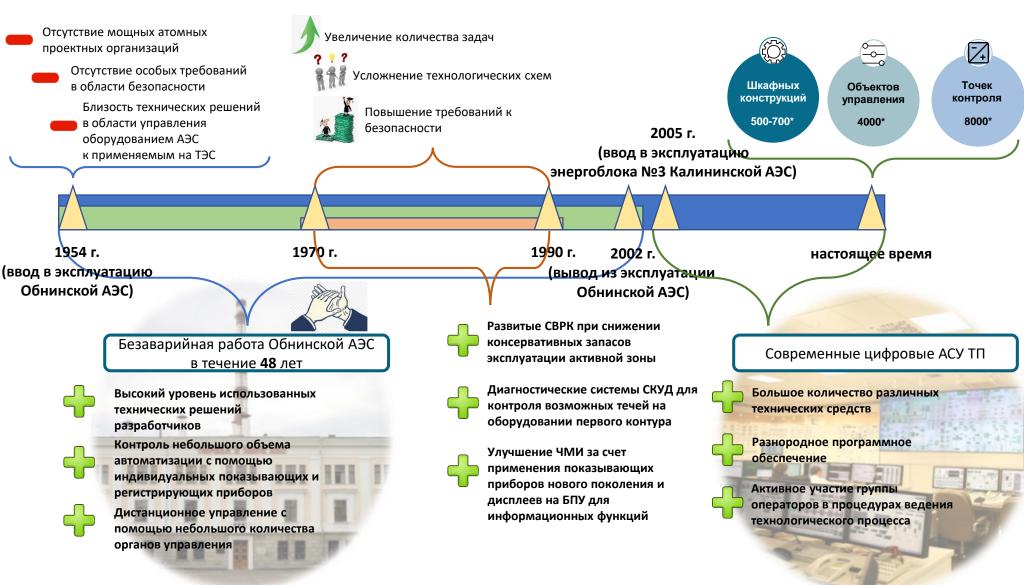


ЭВОЛЮЦИЯ АВТОМАТИЗАЦИИ В ПРОЦЕССЕ РАЗВИТИЯ АТОМНОЙ ЭНЕРГЕТИКИ

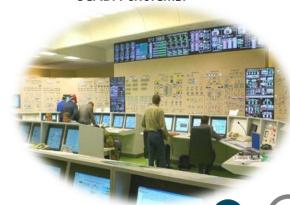
Черняев Алексей Николаевич


Заместитель технического директора – директор департамента проектирования АО «РАСУ»

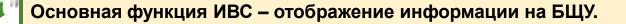
26.06.2019

К 65-ЛЕТИЮ ПЕРВОЙ АЭС В МИРЕ Г. ОБНИНСК ПО ИНИЦИАТИВЕ ЯДЕРНОГО ОБЩЕСТВА РОССИИ

Эволюция АСУ ТП



60-е УС с ИВС ИВ-500 (Нововоронежская АЭС э/бл №1 ВВЭР-440 серии В-179) 70-е УС с ИВС «УРАН-2» (Калининская АЭС э/бл №1 ВВЭР-1000 серии В-338) 80-е УВС «Комплекс Титан-2» (Балаковская АЭС ВВЭР-1000 серии В-320) 2004 г Калининская АЭС э/бл №3 ВВЭР-1000 серии В-320


SCADA-системы

Настоящее время

Реализация управляющей функции на базе аппаратуры и средств защит, блокировок, автоматических регуляторов и дистанционного управления.

Построение ЧМИ на базе показывающих приборов, кнопок, переключателей и ключей управления

Использование для регулирования локальных регуляторов, одноконтурных систем регулирования

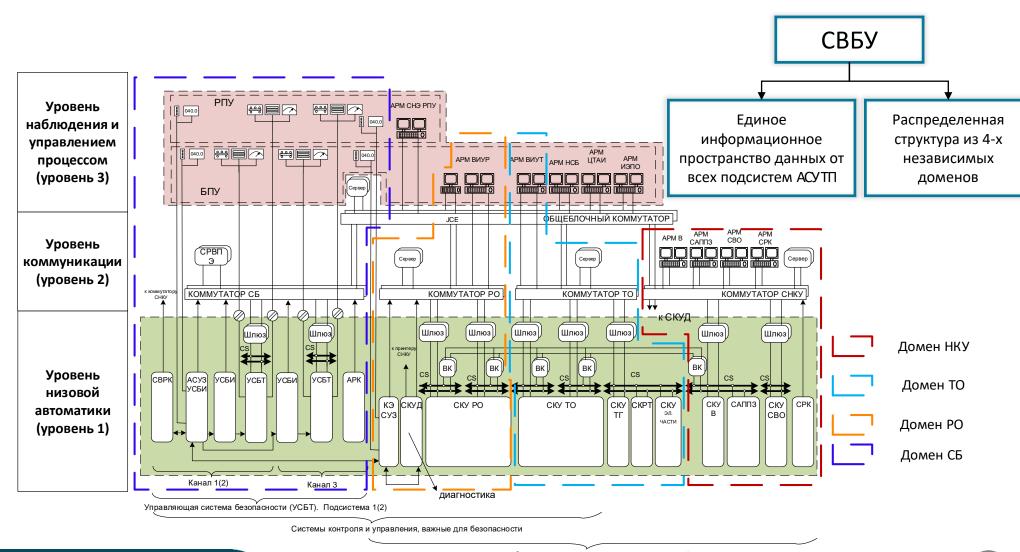
ИВС «Уран-2»

Внедрение РПУ

Энергоблок №3 Калининской АЭС

Первая отечественная цифровая АСУ ТП, реализованная среди всех российских и зарубежных АЭС, выполненных по проектам РФ после 2000 г.

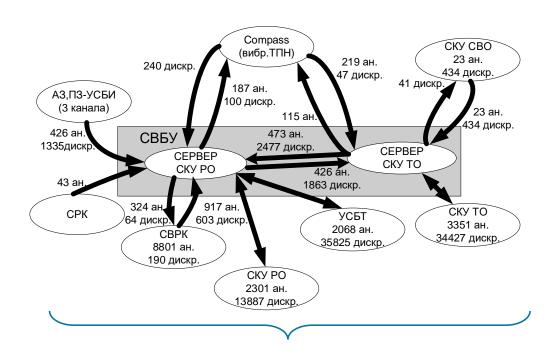
Впервые реализация функций управления с СВБУ



АСУ ТП представляет собой распределенную в пространстве систему, построенную с использованием отечественной аппаратуры:

Инициирующая часть АЗ, ПЗ, УСБИ	ЗАО «СНИИП- СИСТЕМАТОМ»
Исполнительная часть УСБТ	АО «ВНИИА»
Функции двойного управления с БПУ и РПУ (управление с БПУ или с РПУ одним оборудованием)	АО «ФИЗПРИБОР»
ПТК НА (в основном)	АО «ВНИИА»

Структурная схема АСУ ТП энергоблока №3 Калининской АЭС



Энергоблок №3 Калининской АЭС

Эффективность использования цифровых систем

Анализ информационных потоков (Калининская АЭС, э/бл №3)

Подтверждена работа СВБУ во всех режимах нормальной эксплуатации и аварийных режимах

Тиражирование опыта управляющих воздействий с СВБУ

Энергоблок №3 Калининской АЭС

Энергоблок №3 Ростовской АЭС Энергоблок №4 Ростовской АЭС

Ввод в экоплуатацию

2012 г.

2014 г.

2015 г.

2016

2018 г.

Энергоблок №4 Калининской АЭС

Энергоблок №1 АЭС «Куданкулам»

Энергоблок №4 Белоярской АЭС

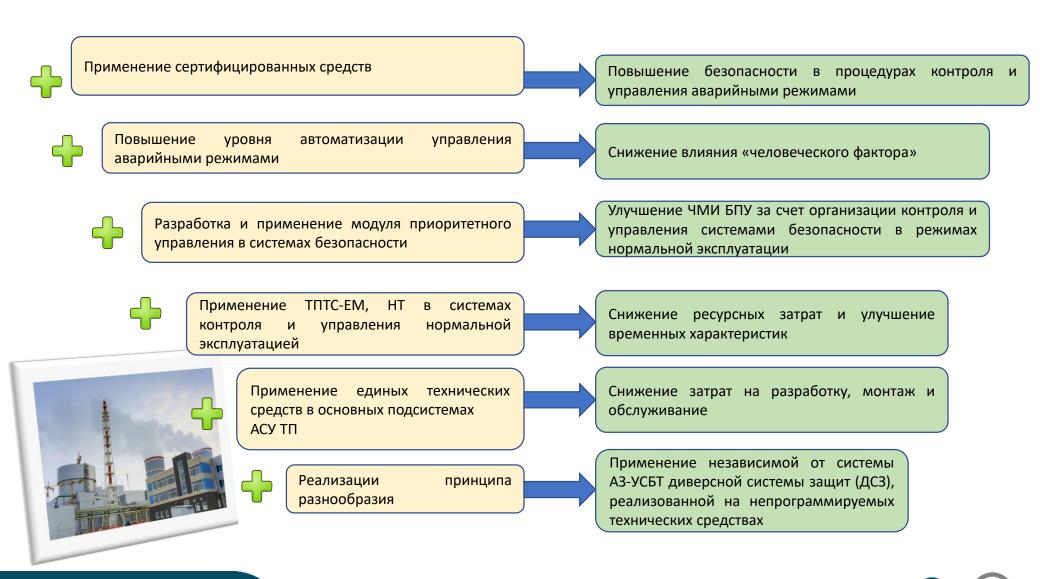
> Энергоблок №2 АЭС «Куданкулам»

Введённые в эксплуатацию энергоблоки проекта АЭС-2006

Энергоблок №5 Ленинградской АЭС

Ввод в эксплуатацию

2016 г. 2018 г. 2019 г.



Энергоблок №6 Нововронежской АЭС

Энергоблок №7 Нововоронежской АЭС

A3C-2006

Белорусская АЭС

Ввод в эксплуатацию

Новое поколение цифровых платформ управляющих систем безопасности (ТПТС-СБ)

Энергоблоки №1-2 Белорусская АЭС

Удовлетворение всем международным требованиям к резервированию, независимости и надежности

Использование идеологии встроенного разнообразия (диверситета)

Минимизирование вероятности отказов по общей причине Оптимизирование затрат на оборудование

На Белорусской АЭС будет представлен новый комплексный продукт, который станет **референтным** для последующих разработок и применения

Перечень АЭС, ввод в эксплуатацию которых запланирован после 2020 г.

Курская АЭС-2

АЭС «Эль-Дабаа»

АЭС «Аккую»

АЭС «Ханхикиви»

АЭС «Руппур»

АЭС «Пакш-2»

Новые требования к АСУ ТП

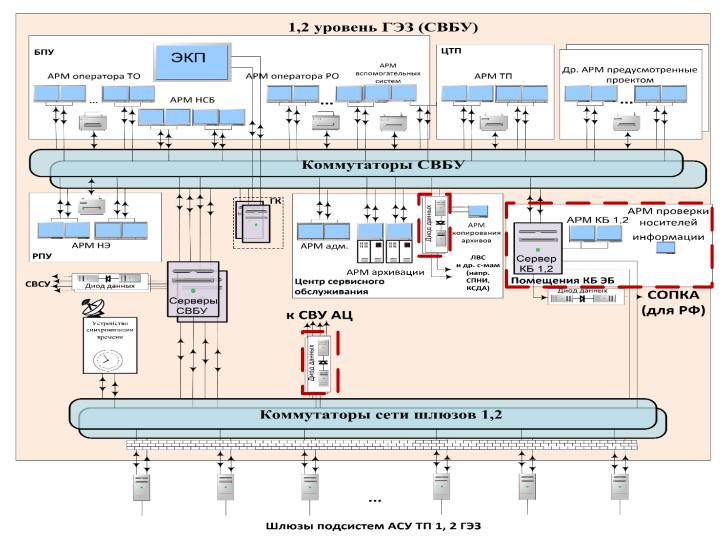
Обновленные концепция ГЭЗ и архитектура АСУ ТП

Надежность программируемых контроллеров в **АЗ-УСБТ**

Технические характеристики АСУ ТП

Разнообразие управляющих систем безопасности

Принципы классификации оборудования по безопасности


Обеспечение кибербезопасности АСУ ТП

Обновленная концепция ГЭЗ

Уровен защиты глубин	В	Цель	Главные (существенные) методы	Радиологические последствия
Уровень	1	Предупреждение отклонений от нормальной эксплуатации и нарушений	Консервативный проект, высокое качество конструкции и эксплуатации, управление основными параметрами блока в назначенных пределах	Нет радиологического воздействия вне площадки (ограничено эксплуатационными
Уровень 2		Управление при отклонениях от нормальной эксплуатации и нарушениях	Управляющие и ограничивающие системы, другие возможности контроля	пределами по выбросу)
Vnopaul 3	3a	Управление авариями с ограниченным	Система защиты реактора, системы безопасности и аварийные процедуры	Нет радиологического воздействия вне
	3b	радиологическим выходом и предупреждение развития состояния до расплавления активной зоны	Дополнительное оборудование безопасности и аварийные процедуры	площадки или незначительное радиологическое воздействие
Уровень	4	Управление авариями с расплавлением активной зоны и ограниченным выбросом вне площадки	Дополняющее оборудование безопасности для уменьшения расплавления активной зоны, управление авариями с расплавлением активной зоны (тяжелые аварии)	
Уровень	5	Уменьшение радиологических последствий значительных радиоактивных материалов		Выброс вне площадки, делающий необходимым защитные мероприятия

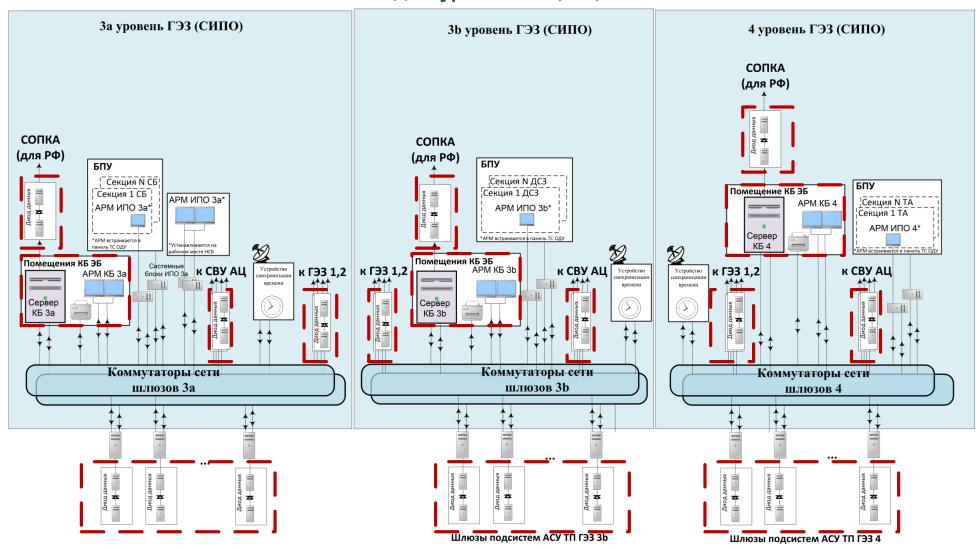

Разработки АО «РАСУ» для новых проектов

Схема СВБУ для 1 и 2 уровней ГЭЗ

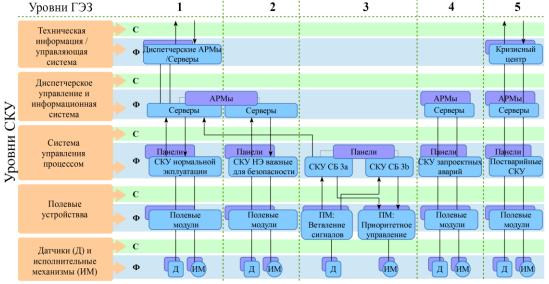
Разработки АО «РАСУ» для новых проектов

Схема для уровней 3а, 3b, 4 ГЭЗ

Разработки АО «РАСУ» для новых проектов

АО «РАСУ» принимало активное участие в разработке документа МАГАТЭ NP-T-2.11 «Подходы к общей архитектуре АСУ ТП АЭС»

Ключевые принципы общей архитектуры АСУ ТП АЭС


Группировка СКУ по уровням глубокоэшелонированной защиты, так что если сбой происходит на одном уровне, он может быть скомпенсирован другими уровнями

Категоризация функций и классификация СКУ

Независимость между уровнями глубокоэшелонированной защиты и классами безопасности

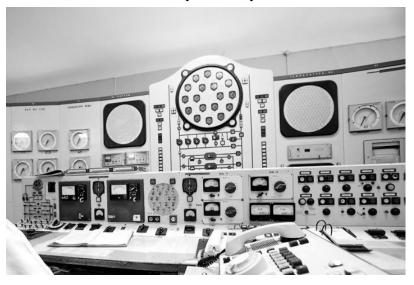
Создание концепций компьютерной безопасности и определение групп компьютерной безопасности по зонам

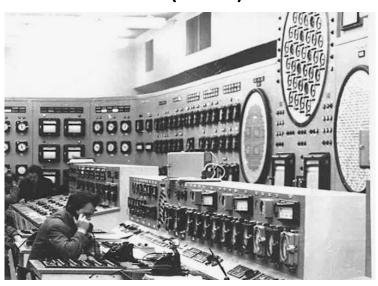
Интеграция и согласованность с архитектурой станции, в частности для обеспечения безопасности (включая глубокоэшелонированную защиту)

БЩУ Первой (Обнинской) АЭС (1954 г.)

БЩУ Кольской АЭС (сер. 1970-х гг.)

БПУ энергоблока № 3 Калининской АЭС (2004 г.)

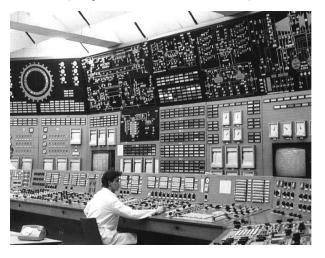



БЩУ энергоблока № 1 Нововоронежской АЭС (1964 г.) БЩУ Ленинградской АЭС (сер. 1970-х гг.)

БПУ энергоблока № 6 Нововоронежской АЭС (2016 г.)

БЩУ Первой (Обнинской) АЭС (1954 г.)

БЩУ Энергоблока №1 Нововоронежской АЭС (1964 г.)



Концентрация вокруг реактора

Отсутствие структурирования информации

БЩУ Кольской АЭС (середина 1970-х гг.)

БЩУ Ленинградской АЭС (середина 1970-х гг.)

Соответствие технологической структуре блока


Применение развернутых активных мнемосхем, отображающих состояние оборудования энергоблока в динамике

Применение дисплеев, отображающих состояние энергоблока и оборудования в компактной графической форме

Осуществление большой части контроля и управляющих действий с помощью кнопок, ключей и аналоговых приборов

БПУ Энергоблока № 3 Калининской АЭС (2004 г.)

БПУ Энергоблока № 6 Нововоронежской АЭС (2016 г.)

Новая мозаичная технология изготовления панелей БПУ


Дисплейный способ управления, при котором основные операции выполняются с помощью компьютерных манипуляторов и всплывающих окон с виртуальными кнопками управления

Экраны коллективного пользования, предназначенные для целостного представления обобщенного состояния энергоблока

БПУ будущих проектов, предлагаемых АО «РАСУ»

БПУ Курской АЭС-2

Улучшение эргономики

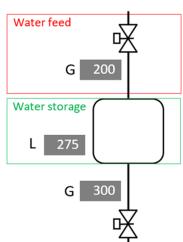
Увеличение площади БПУ

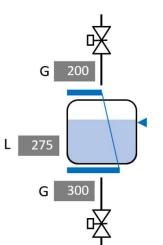
Улучшение информационнотехнической поддержки

Традиционный ЧМИ

Принцип «один к одному»

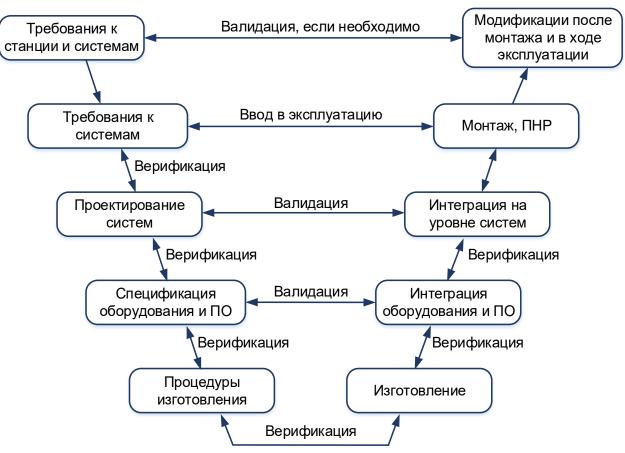
Сложное ЧМИ, состоящее из тысяч компонентов


«Один элемент информации – одно средство отображения информации» «Один элемент оборудования – один орган управления»



Современный ЧМИ Упрощение сбора и анализа информации: Современный ЧМИ снижение объема навигационных действий; поддержание процесса принятия решений. Дисплеи, Функционально-Экологические Адаптивные Обзорные дисплеи ориентированные ориентированные дисплеи дисплеи на задачу дисплеи Water feed Группирование информация, 200 G 200 необходимой для Активирование разных

выполнения определенной типовой задачи, такой как снижение или подъем мощности




форм представления информации в разных ситуациях

Верификация и валидация АСУ ТП

Жизненный цикл АСУ ТП

NS-G-1.3 «Системы контрольноизмерительных приборов и управления, важные для безопасности атомных станций»

Верификация и валидация АСУ ТП в АО «РАСУ»

Верификация проектной документации

Верификация заданий заводу на изготовление

Верификация статического и динамического тестирования ППО с использованием математических моделей

Верификация видеокадров СВБУ

Испытания на полигонах заводах изготовителей, АО «РАСУ» и площадках АЭС

Статистика выявленных замечаний

Выявленные ошибки Единая база по проекту с Новые методики верификации кодированием и и валидации классификацией по типу Выявление ошибок на более Расширение базы проводимых ранней стадии на следующих проектах проверок

Заключение

Мировое значение атомной энергетики России – в 12-ти странах мира проектируется и сооружается 35 атомных энергоблоков по проектам РФ

Системы контроля и управления современных АЭС России поколения 3+ это цифровые системы в составе энергоблоков мощностью 1200–1300 МВТ с высоким уровнем безопасности, надежности и экономичности

Применение современных технических средств в составе СКУ повышает безопасность за счет снижения ошибок персонала.

Спасибо за внимание!

