

Разработка новых материалов и задачи реакторного материаловедения

Дуб А.В., Рисованый В.Д. (АО Наука и инновации», г. Москва)

Научная сессия «Наука для атомной энергетики», г. Обнинск, 7.06.2019г.

Содержание

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

Введение

- 1. Цель и основные задачи при разработке инновационных материалов
- 2. Трансформация подходов в развитии материалов
- 3. Новые требования к развитию и новые материаловедческие и технологические принципы
- 4. Реализация: конструкционные, топливные и конструкционные материалы
- 5. Принципы управления структурой
- 6. Формирование свойств материалов многоуровневый подход: Мезо-уровень включения, зерно
- 7. Многоуровневое моделирование
- 8. Методы ускоренных испытаний
- 9. Новые материалы и цифровые технологии:
- 10. Основные задачи по разработке новых дерных материалов в рамках Единого тематического плана НИОКР скорпорации «Росатом»

Заключение

1. Цель и основные задачи при разработке инновационных материалов

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

Цель - обеспечение лидерства в области создания новых материалов и нормативной базы/сертификации для обеспечения безопасности и экономической эффективности эксплуатации ядерно-энергетических установок, построение двухкомпонентной ядерной энергетики на основе управления эволюцией микро- и наноструктуры материалов

Основные задачи:

- -оценка и разработка критериев разрушения/ эволюции свойств
- -комплементарное применение многоуровневого моделирования, проведение ускоренных радиационных испытаний свойств материалов и изделий в обоснование конструкторских решений
- -проведение исследований влияния параметров сфокусированной энергии на характеристики формирующихся материалов. Порошки. Композиты. Модифицирование поверхности
- разработка перспективной нормативной базы и стандартов, методов контроля для внедрения новых методов конструирования и производственных гехнологий.

2. Трансформация подходов в развитии материалов

ГОСУДАРСТВЕННАЯ

(Smart Big Data & Advanced Simulation & Optimization)-Driven Advanced (Design & Product Development)

ЧЕРГИИ «РОСАТОМ»

21 век

20 век

Подходы к традиционным материалам

Металлы

Гибкость конструкции

Материалы с экстремальными свойствами

Новый технологический уклад

Рециклинг

«Быстрые процессы»

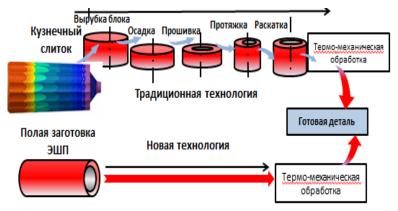
Цифровое производство

Расчеты вместо краш-тестов

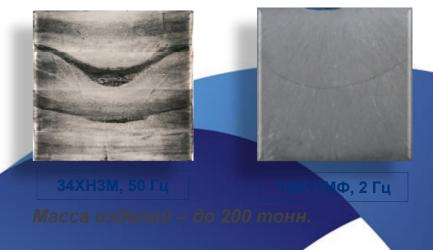
Снижение веса – «зеленый» императив

Трансформация подхода: «от свойства материала к свойству изделия»

ДОСТАТОЧЕН ЛИ ЗАПАС, ЧТОБЫ БЫТЬ В ЛИДЕРАХ?

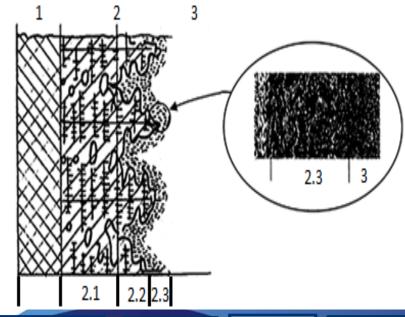

BPEMS!!!

3. Реализация : Конструкционные материалы


Эволюция корпусной стали. ВКУ; ВВЭР-С. ВВЭР-СКД

Наплавные последовательные процессы (ЭШП и др.)

Масса металла снижается на 50%, КИМ возрастает до 70%


3.Формирование свойств материалов - многоуровневый подход: Микро-нано, фазовые переходы

«РОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

Масштаб уровней структуры

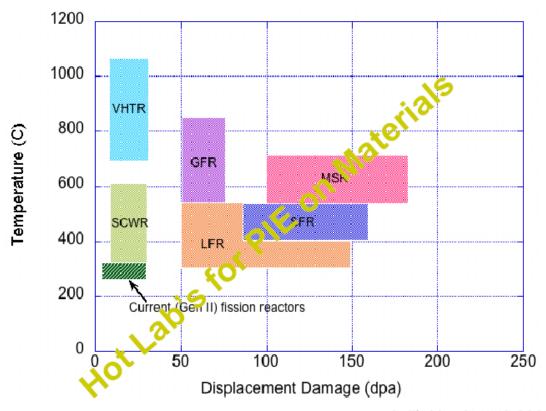
№ п/п	Название	Масштаб		
микроуровень,		≤ L ₀		
1	Вакансия, атом	2-3·10 ⁻¹⁰ м		
2	Кластеры	2–5·10 ⁻⁹ м		
3	Дислокация	10 ⁻⁸ м		
МЕЗОУРОВЕНЬ				
4	Блок мозаики, суб-зерно,	10 ⁻⁷ —10 ⁻⁶ м		
	сульфиды, НВ			
	уровень зерна,	L _s		
5	Зерно. Дендрит. Сульфиды, НВ.	10 ⁻⁵ — 10 ⁻⁴ м		
МАКРОУРОВЕНЬ, > L _s				
6	Группа зерен	2 - 5·10 ⁻⁴ м		
7	Участок образца	10 ⁻³ м		
8	Образец в целом	Более 10 ⁻³ – 10 ⁻² м		

Формирование первичной кристаллической структуры

3.Предлагаемые материалы для реакторов IV-го поколения

(A Technology Roadmap for Generation IV Nuclear Energy System//Issed by the US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, GIF-002-00, December 2002

* - предложения авторов)


POCATOM

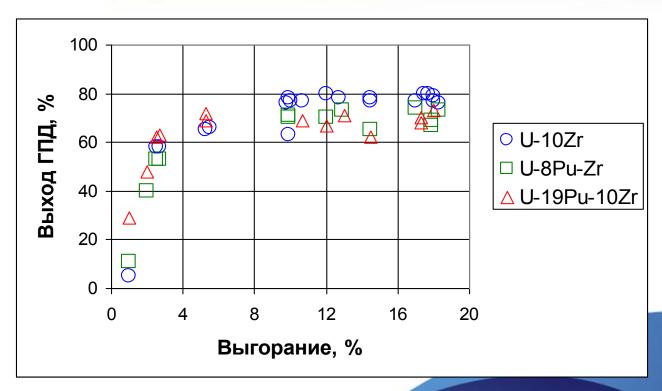
Реактор	Теплоноситель	Максимальная	Материалы элементов активных зон			
геактор	Теплоноситель	температура, °С	Топливо	Оболочка	Поглотитель	
GFR быстрый	гелий	850	(U,Pu)C/SiC композитное керамическое, топливные частицы с керамическим покрытием	керамика (?)	высокотемпературная керамика (карбиды или бориды металлов) на основе бора с содержанием изотопа ¹⁰ B до 95% - ¹⁰ B _v C,	
LFR быстрый	свинец или свинец- висмут	800	U-Pu (U,Pu)N	ферритно- мартенситная сталь (912% Cr) керамика		
SFR быстрый	натрий	520 (550)	U-Pu-Zr U-Pu-Zr + актиниды (U,Pu)O ₂ (U,Pu)O ₂ +актиниды	ферритно- мартенситная сталь (912% Cr) ODS сплавы ванадия с покрытиями*	W ¹⁰ B ₂ , Hf ¹⁰ B ₂ * HfHx Dy ₂ O ₃ ·HfO ₂ , Dy ₂ O ₃ ·HfO ₂ +B ₄ C*	
SCWR быстрый (тепловой)	вода при сверхкритичес- ких параметрах	550 (Р=25 МПа)	(U,Pu)O ₂ Дисперсионное (UO ₂)	ферритно- мартенситная сталь (912% Cr) Fe Ni Cr Ti ODS Inconel 690,625,718		
MCR надтепловой (быстрый)	соляной расплав	700	Соль	-	-	
VHTR тепловой	гелий	1000	TRISO UOC в графитовой матрице с покрытием ZrC	графит с ZrC – покрытием ¹¹ B ¹⁵ N * ¹¹ B ¹⁵ N + ⁷	карбид бора с пироуглеродной пропиткой *	

3.Требуемые температуры эксплуатации и повреждающие дозы в ЯЭУ различного типа

«РОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

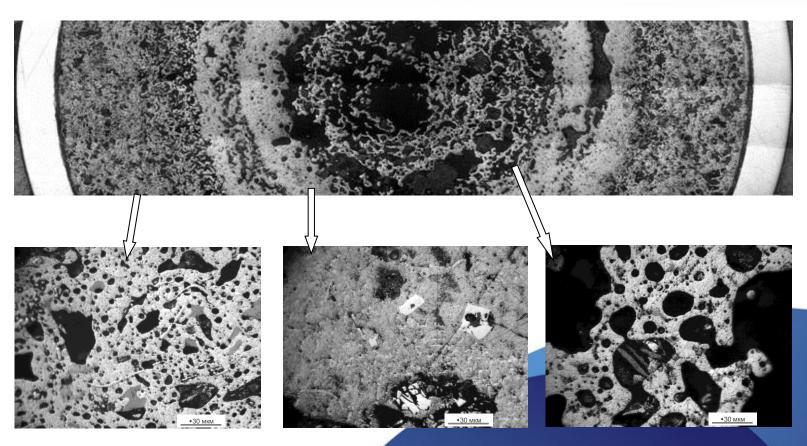
S. Zinkle, SMINS 2007, Karlsruhe

All Gen IV and fusion concepts pose severe material challenges



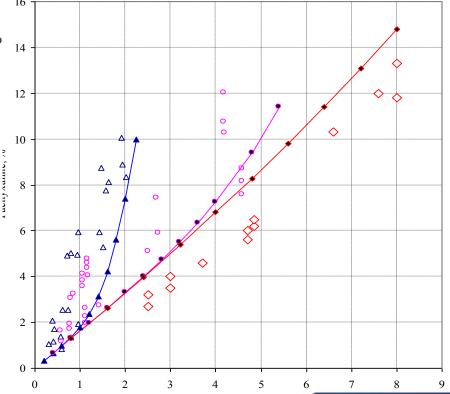
3.Разработка композиционных материалов типа SiC-SiC (ONL, США, 2014г)

PEAKTOP	Использование	Усл	овия эксплу	/атации
ИТЭР	Бланкет	Не	400-900°C	> 50сна
HTGR, VHTR тепловой	Конструкционные элементы	He	600-1100°C	> 40сна
LWR (PWR,BWR) тепловой	Оболочки ТВЭЛ, Решетки, Каналы	Вода	300-500°C	> 50сна
FHR, AHTR тепловой	Конструкционные элементы	Соли	700°C	> 10сна
SFR быстрый	Оболочки ТВЭЛ, Конструкционные элементы	Na	500-700°C	> 100сна
GFR быстрый	Оболочки ТВЭЛ, Конструкционные элементы	He	700-1200°C	> 100сна


3.3ависимость выхода газа от выгорания в металлическом топливе*

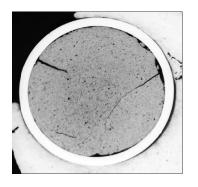
^{*} R.Pahl, R.Wisher, M.Billone et al.Steady-s ate irradiation testing of U-Pu-Zr fuel to 18 at.% burnup. Proc. of the 1990 Int.Fast Reactor Safety Meeting, v.4, p.129

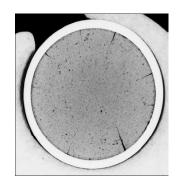
3.Типичная структура U-19Pu-10Zr после реакторного облучения

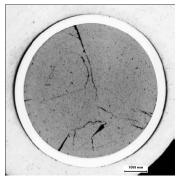


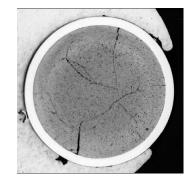
3. Распухание нитридного топлива

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»


UN, макс температура 1675 K, потность 93%, ○ UN, макс емпература 1460 K, потность 95% - иссл. реакторы ША, ○ UN, макс температура 173 K, плотность 84-94% - БР-10, асчет: 1675 K - ▲, at 1460 K - •, at 173 K - •.



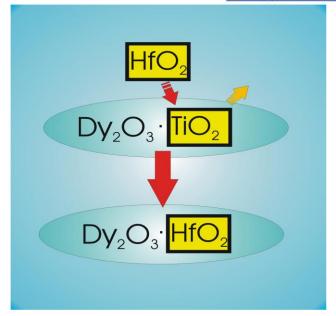

3. Нитридное топливо (UPu) N в BORA-BORA

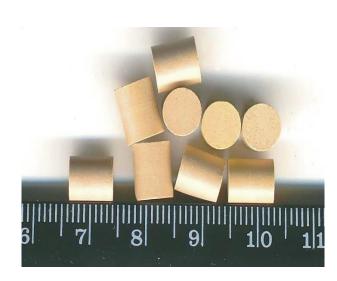

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

Поперечные сечения топливных таблеток после облучения

Топливо	UPu _{0.6} N	UPu _{0.45} N
Скорость распухания % / %т.ат.	(0,48–0,68) ±0,04%	(0,64–1,11) ±0,04%
Выход ГПД, %	19	19
Макс глубина коррозии оболочки, мк	нет	15 (в верхнем сечении АЗ)

Нет заметных изменений структуры топлива, кроме мелкой внутри-зеренной пористости и коагуляции зерно-граничных пор (максимальная температура топлива 1750 °C)

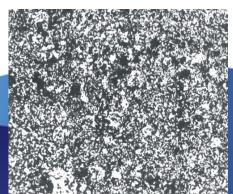

Не выявлено диссоциации нитрида при облучении в течение 2-х этапов ни по состоянию микроструктуры, ни по изменению содержания азота в газовой фазе под оболочкой твэлов, ни по каким-либо иным признакам.



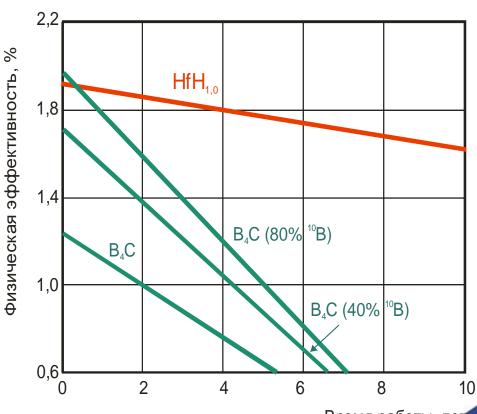
3.Гафнат диспрозия (nDy₂O₃⋅mHfO₂) для реакторов на тепловых нейтронах

POCATOM

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»



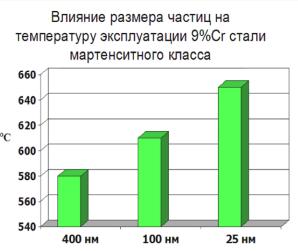
Замена Ті на Hf позволяет

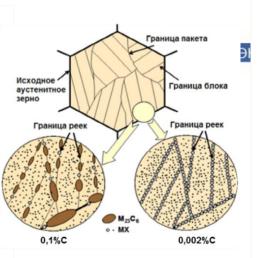

- повысить физическую эффективность поглотителя
- получить флюоритную кристаллическую структуру наиболее стойкую к реакторному облучению
- увеличить плотность таблеток с 6,2 г/см³ до 8,0 г/см³
- улучшить теплофизические характеристики

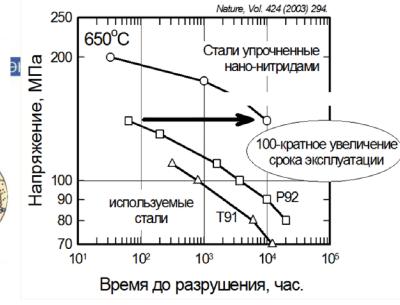
3.Поглощающие материалы для БН- реакторов

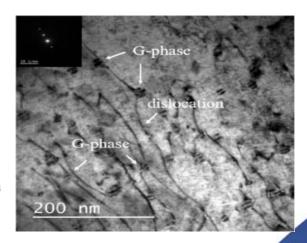
ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

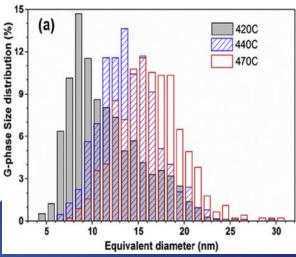
Время работы, лет

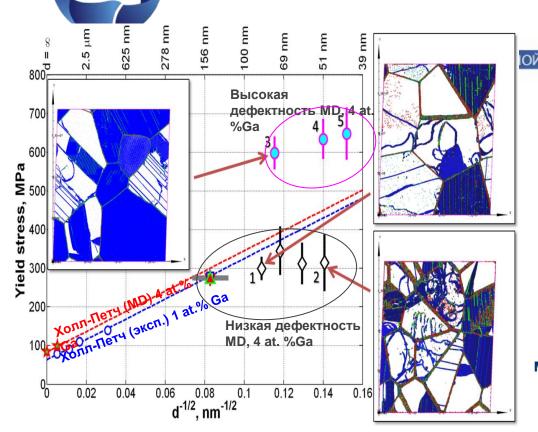

Физическая эффективность стержней регулирования в коммерческом реакторе на быстрых нейтронах JSFR (Япония, 2040-2050 гг.)

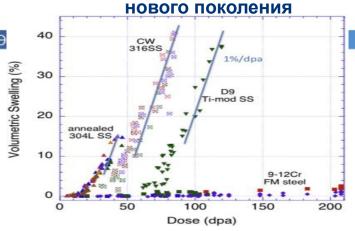

Макроструктура поперечного сечения таблеток В₄С после облучения




4.Формирование свойств материалов - многоуровневый подход: Мезо-уровень - включения, зерно




Ni, Si и Mn обогащенные выделения G-фазы, гетерогенно зародившиеся на дислокациях в 12%Cr Ф/М стали, облученной до 20 dpa при 440 C.



Распределение по размеру (%) частиц G-фазы как функция их эквивалентного диаметра в HT9 облученном до 20 dpa при 420, 440 и 470.C.

5. Многоуровневое моделирование

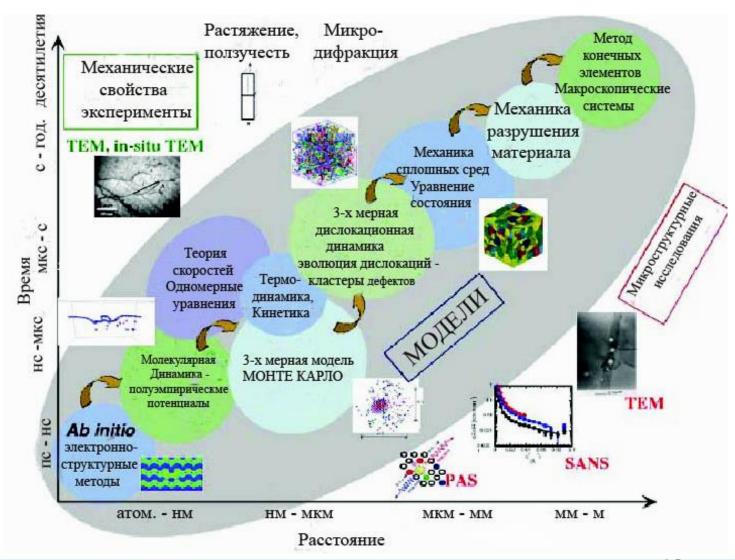
Создание материалов для реакторов

Основные требования:

- рабочая температура 800 С
- сохранение свойств до 150 сна

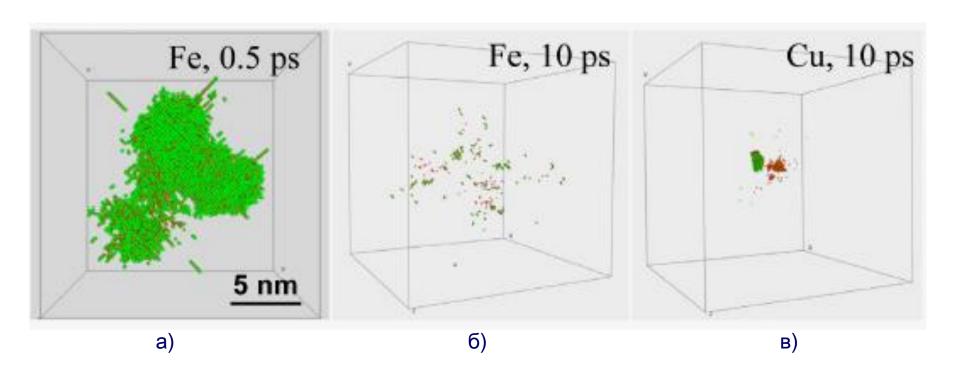
Применение атомистического моделирования к реакторным материалам - решение частных задач:

Кластер Y-O-1 ДУО стали

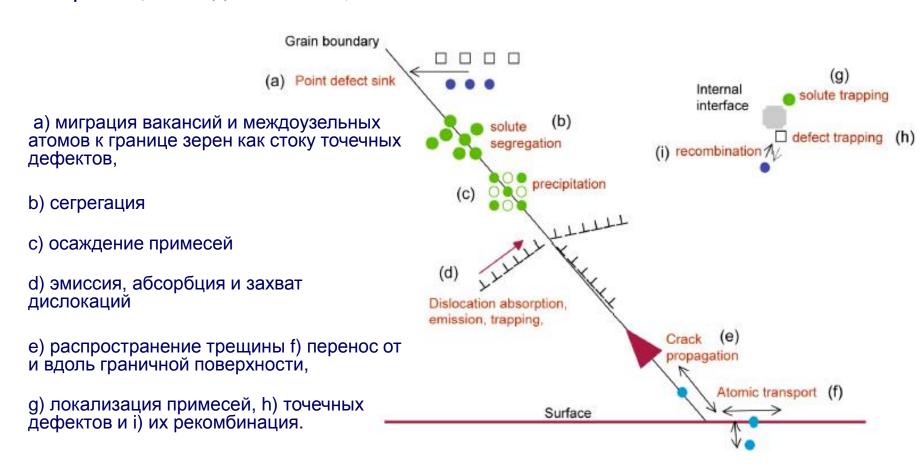

взаимодействие дислокаций с зеренной структурой - управление кристаллизацией и упрочнением материала измельчением зерна и повышением степени внутризеренной дефектности

Моделирование механизмов упрочнения и стабилизации (ДУС сталей - упрочнение мелкодисперсными оксидными частицами Y-Ti-O)

5.Физическое моделирование реакторных материалов

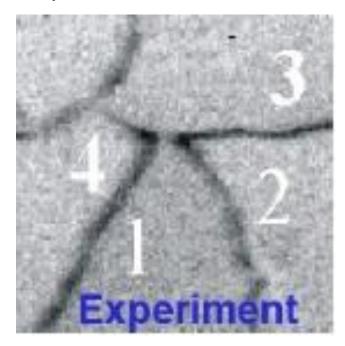


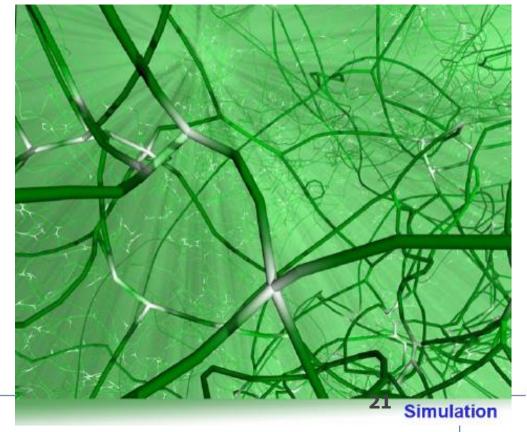
5. Материалы под облучением


«Мгновенные снимки» МД-генерации вакансий (красные точки) и междоузельных атомов (зеленые точки) в месте рассеяния нейтрона с энергией ~0.7 МэВ на железе (ОЦК) и меди (ГЦК) при максимуме точечных дефектов (а), после частичной их рекомбинации в «температурном пике» (б) и после охлаждения (в)

5. Материалы под облучением

Графическая модель межфазной границы как центра притяжения процессов, стимулируемых облучением, которые могут изменять структуру и состав материала, а следовательно, и его свойства

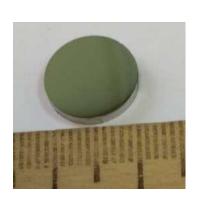

5. Моделирование систем под облучением



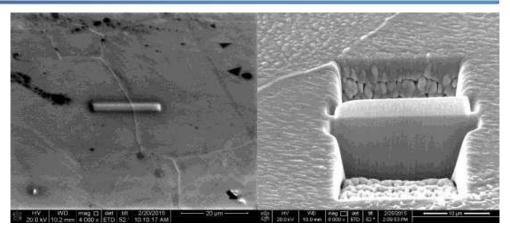
Моделированием на суперкомпьютере (LLNL, 10 тыс. параллельных процессоров) установлено, что упрочнение (закалка) металла происходит, когда дислокации связываются в узлы по четыре на каждый узел

Это подтверждается экспериментом, что открывает новые технологические возможности для упрочнения конструкционных

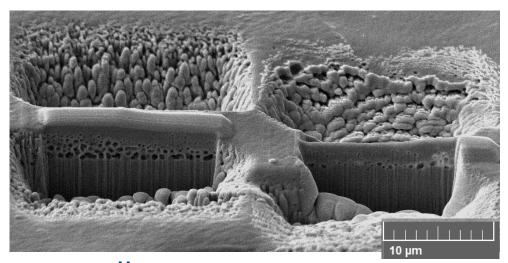
материалов.



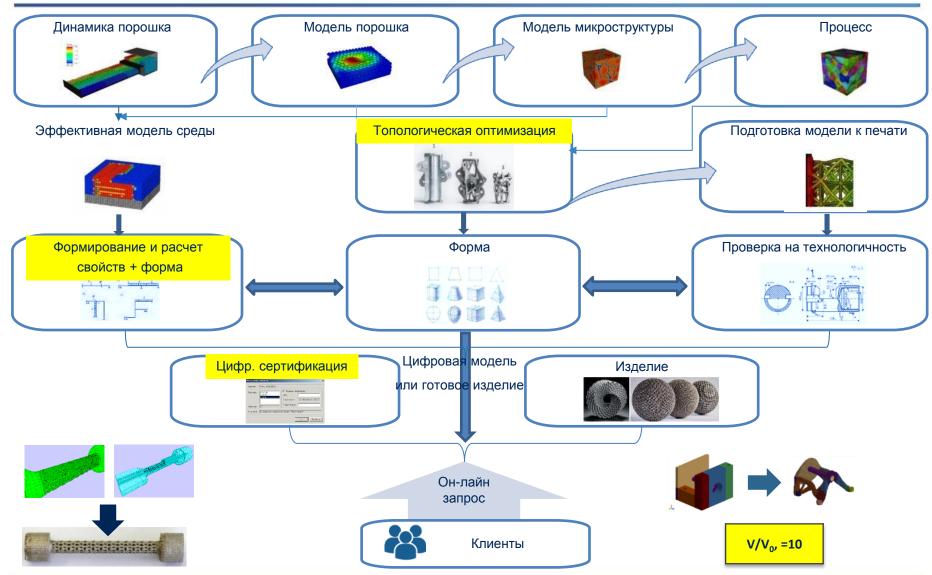
6. Методы ускоренных испытаний



Общий вид дискового образца для ионного облучения (D=12 мм, t=2мм)



Ускоритель ионов TANDETRON в АО «ГНЦ РФ-ФЭИ»


Вырезка темплета из облученной поверхности методом сфокусированного ионного пучка (FIB)

Неравномерность пористости при облучении стали

7. Новые материалы и цифровые технологии: свойства изделия

8. Основные задачи по разработке новых неядерных материалов в рамках Единого отраслевого тематического плана НИОКР Госкорпорации «Росатом»

Водо-водяные энергетические реакторы

- Унификация стандартов хрупкой прочности свар. швов корпуса реактора
- Нац. стандарты стойкости к межкристаллитной коррозии нержавеющих сталей
- Цифровое управление качеством
- Корпусная сталь и ВКУ ВВЭР С /СКД
- Методы контроля
- Сварочные материалы

Изделия для РАО и ОЯТ

- Многослойные материалы
- Методы контроля
- Сварочные материалы

Конструкционные материалы топлива

- Критерии разрушения и прочности
- Радиационно-стойкие стали
- Стали упрочн. дисперсными оксидами
- Композиты SiC/SiC
- Материалы тепловыделяющих элементов легководных реакторов
- Поглощающие материалы
- Методы контроля и сварочные мат-лы

Реакторные установки со свинцовым теплоносителем

- Обоснование ресурса до 30 и 60 лет
- Методы контроля
- Сварочные материалы

Жидко-солевые реакторы

- Состав топливной соли
- Конструкционные материалы топливного контура
- Конструкционные материалы установки переработки соли
- Расчёты условий работы
- Методы контроля
- Сварочные материалы

Атомные станции малой мощности

- Новая сталь повышенной прочности
- Обоснование срока службы материалов на 30 и 60 лет
- Методы контроля и сварочные мат-лы

Реакторы на быстрых нейтронах БH-1200

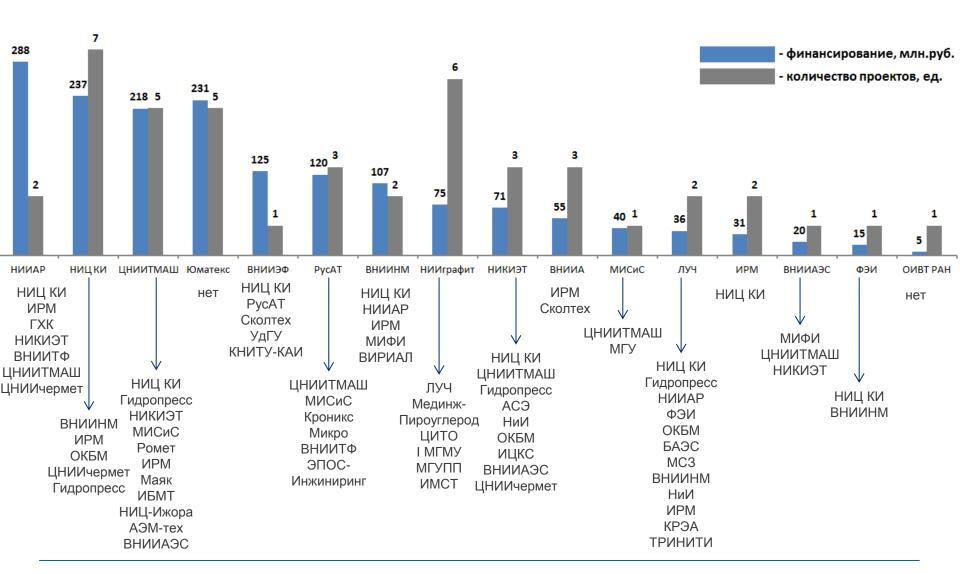
- Увеличение срока службы парогенератора до 60 лет
- Методы контроля
- Сварочные материалы

Аддитивные технологии

- Виртуальный принтер
- 3D-оборудования и технологий для печати металлических изделий
- Сложнопрофильные и крупногабаритные изделия атомной энергетики
- Механизмы управления кристаллизацией

Углеродные материалы и композиты

- Интеллектуальные композиты
- Функциональные материалы
- Радиационностойкие C-, C-C, C-Si материалы
- Биосовместимые углеродные материалы


8. ЕОТП. Материалы и технологии

8. Распределение проектов по головным организациям и соисполнителям (2019 г)

Спасибо за внимание