

Развитие информационных систем, включая интеллектуальные, на Нововоронежской АЭС.

ЗНЦТАИ Синюков Денис Сергеевич

День вчерашний

Первые АСУТП строились на основе традиционных средств автоматики с жесткой логикой. Средства контроля и управления блочного пульта АЭС создавались на основе - стрелочных приборов, самописцев, световых индикаторов, ключей индивидуального управления.

День вчерашний

НОВОВОРОНЕЖСКАЯ

Надежность АСУТП в целом обеспечивалась за счет независимости ее элементов, локализации отдельных алгоритмов, отказ одного элемента системы не приводил к отказу другого элемента системы. Уровень диагностики аппаратуры был достаточно низок, либо вообще отсутствовал.

День вчерашний

Первые системы сбора и представления информации базировались на аппаратуре M7000, CM-2M, M-60, ИВ-500, CBPK-01 и т.п Представление информации от различных информационных систем реализовывалось на индивидуальных мониторах. Представляемые слайды не возможно было объединить на одном формате.

СВРК и АСКР - агрегатное средство контроля и регулирования. А701-3

М-60 и Уран-В на энергоблоке

СППБ

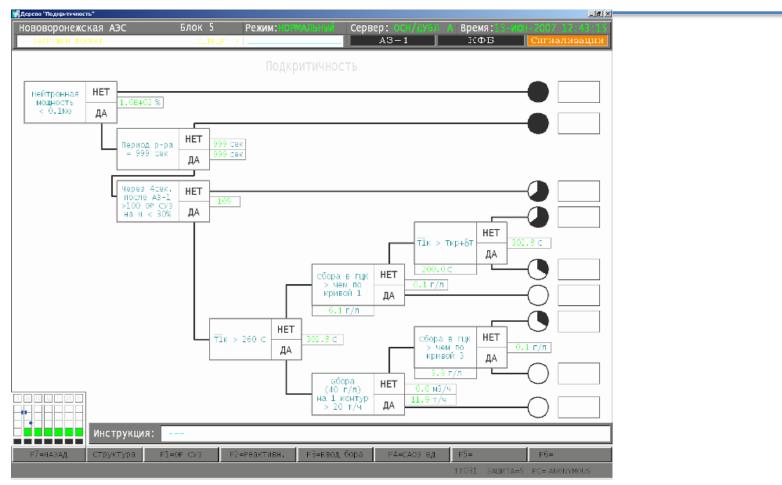
Первые элементы информационной поддержки операторов энергоблоках НВАЭС появились в 1998 году при реализации СППБ. СППБ являлась разработка и Целью внедрения внедрение обеспечения для информационной программного поддержки оперативного персонала при ликвидации проектных и запроектных аварий, обеспечивающей своевременное выявление условий целостности барьеров безопасности нарушения определение приоритетного для безопасности направления действий (выбор соответствующей симптомно-ориентированной аварийной инструкции и эффективное применение этой инструкции).

СППБ

Для оценка текущего состояния критических функций безопасности применялись деревья состояний КФБ. Дерево содержало серию вопросов о состоянии энергоблока, требующих однозначного ответа - "да" или "нет". Каждый из задаваемых вопросов зависел от ответа на предыдущий вопрос. Эта зависимость приводила к разветвленной структуре, которая и называется "деревом состояния".

КФБ "Подкритичность активной зоны реактора"

КФБ "Охлаждение активной зоны реактора"


КФБ "Теплоотвод от 1 контура ко 2 контуру"

КФБ "Целостность1 контура"

КФБ "Целостность герметичного ограждения"

СППБ

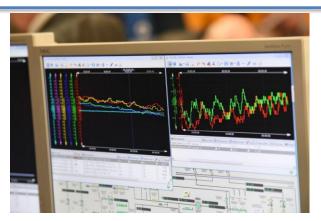
формат дерева КФБ "Подкритичность "

Новые требования

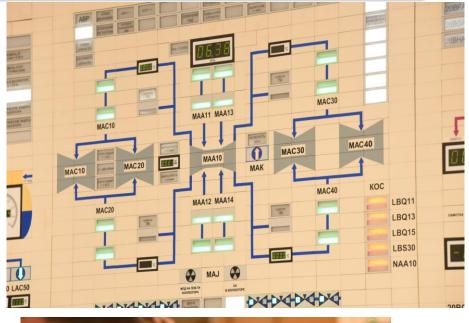
Новые требования к современной АСУТП диктуются уровнем развития компьютерной техники с высокой производительностью, требованиям к человеко-машинному интерфейсу и характеристикой объекта автоматизации (энергоблок АЭС).

Технологическое оборудование энергоблока, количество					
Точки контроля	Электроприводная запорная арматура	Насосы, вентиляторы, электронагреватели	Регулирующая арматура		ФГУ
6600	3500	620	230		112
Технологическое оборудование общестанционных объектов (ОСО), количество					
Точки контроля	Электроприводная запорная арматура	Насосы, вентиляторы электронагревателы	.	Регулирующая арматура	
4160	2630	1370		315	

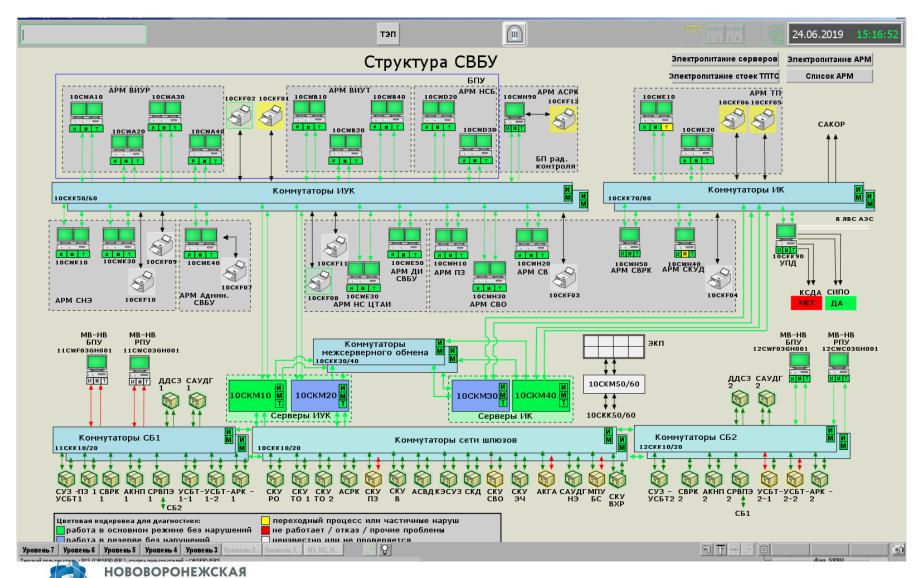
Новая реализация

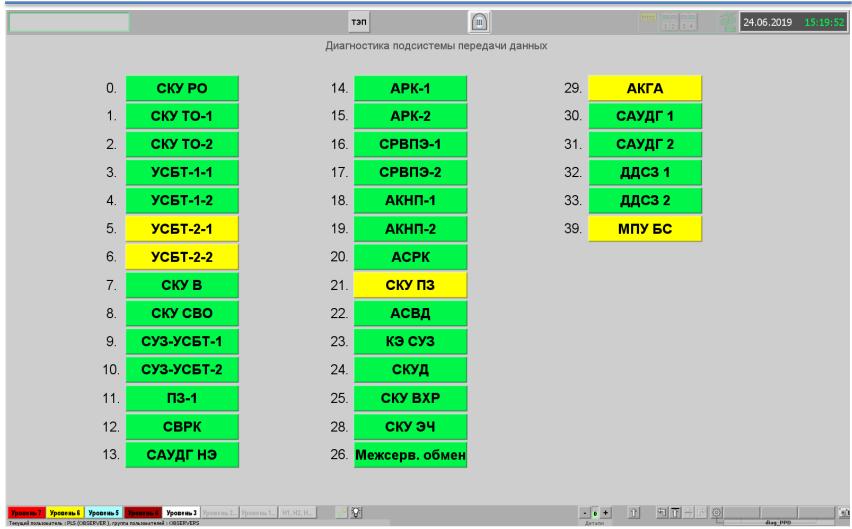

Современные системы автоматизации обладают:

- централизованным собором информации
- регистрацией всевозможных параметров
- удобной визуализацией
- глубокой внутренней самодиагностикой
- объединённой сетью Ethernet (единой коммуникационной шиной) по которой обменивается данными внутри себя и другими ПТК.

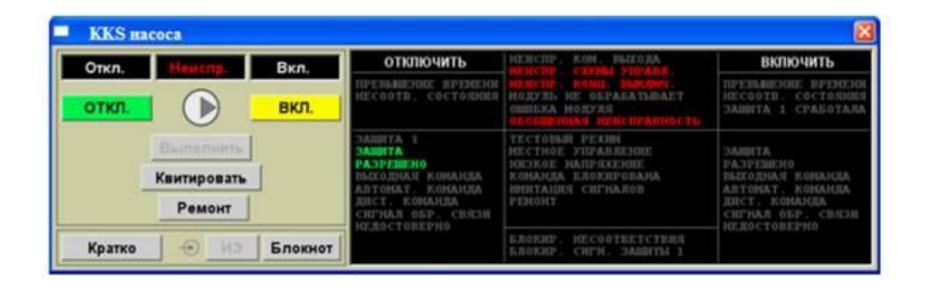


Современные средства управления





Современная система верхнего блочного уровня


Системы объединённые СВБУ

Управление с СВБУ

Управление технологическим оборудованием в два клика «мышки» с экрана монитора.

Много возможностей - много уязвимостей

Проблемным компонентом в современной АСУТП является общая коммуникационная шина для которой возможно возникновение «широковещательного шторма» - лавина широковещательных пакетов.

Причины:

- <u>петли коммутации</u>, которые возникают при неправильной конфигурации сети;
- -<u>неисправность</u> <u>сетевого</u> <u>оборудования.</u>

Много возможностей - много уязвимостей

Современные системы получили дополнительную уязвимость от воздействия вредоносных программных продуктов или целенаправленных кибератаках.

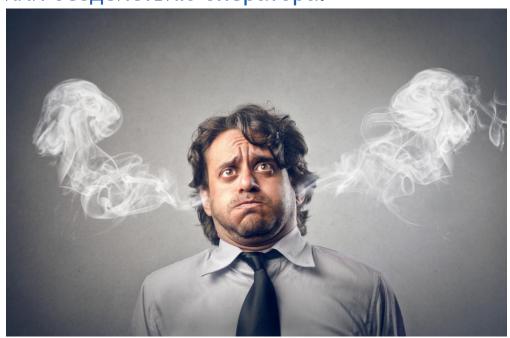
Слабые пароли

Наделение пользователей излишними привилегиями

Несанкционированное подключение неучтенных носителей информации

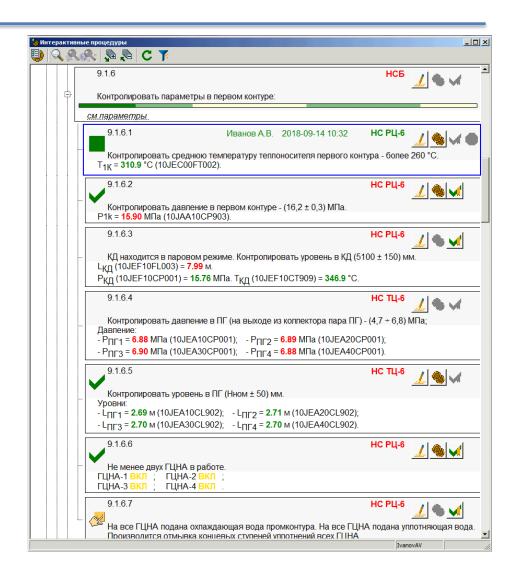
Небезопасная конфигурация программного обеспечения

Нарушение целостности программной среды



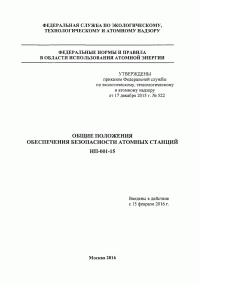
Применение уязвимого программного обеспечения

Много возможностей - много уязвимостей


Увеличение глубины автоматизации производства, сбор данных от всех источников информации и всеобщая самодиагностика привели к возрастанию информационного потока, который достигает уровня значительно превышающего возможности восприятия и реакции тренированного оператора, что может привести к ошибочным действиям или бездействию оператора.

Направления решения новых уязвимостей

Важной составляющей новых проектов является создание системы интеллектуальной поддержки операторов (СИПО). Поддержки BO режимах эксплуатации, включая прогнозирование развития технологического процесса с использованием модели энергоблока, в целях ограничения нагрузки оператора ДО уровня соответствующего возможности адекватнои оценки возникшей ситуации. СИПО позволить решить проблему перезагруженности оператора.



Необходимость реализации на современных энергоблоках СИПО закреплена документами:

▶ НП -001-15 ОБЩИЕ ПОЛОЖЕНИЯ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ АТОМНЫХ СТАНЦИЙ

ГОСТ Р МЭК 60964-2012 Пункты управления. Проектирование.

Атомные станции

На Нововоронежской АЭС первые шаги по реализации СИПО делали ещё до ввода 6 энергоблока в эксплуатацию.

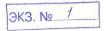
Открытое акционерное общество «Российский концерн по производству электрической и тепловой энергии на атомных станциях» (ОАО «Концерн Росэнергоатом»)

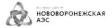
СОГЛАСОВАНО

УТВЕРЖДАЮ

Первый заместитель генерального директора ОАО « ВНИИАЭС»- Главный конструктор АСУ ТП Первый заместитель генерального директора ОАО «Концерн Росэнергоатом» «Нововоронежская АЭС»

В.Г. Дунаев


2014


ТЕХНИЧЕСКОЕ РЕШЕНИЕ

ПО РЕАЛИЗАЦИИ НА ЭНЕРГОБЛОКЕ №1 НОВОВОРОНЕЖСКОЙ АЭС-2 ФУНКЦИЙ ИНТЕЛЛЕКТУАЛЬНОЙ ПОДДЕРЖКИ ОПЕРАТОРА

На блоке используется опытный макет системы СИПО, который набирает статистику о работе блока для создания модели блока.

Акционерное общество «Российский концерн по производству электрической и тепловой энергии на атомных станциях» (АО «Концерн Росэнергоатом»)

Филиал АО «Концерн Росэнергоатом» «Нововоронежская атомная станция» (Нововоронежская АЭС)

инженера по новым блокам (должность)
В.А. Вагнер (подпись) (инициалы, фамилия)

Первый заместитель главного

УТВЕРЖДАЮ

целью создания системы информационной поддержки операторов BO **BCEX** режимах эксплуатации в целях ограничения персонал нагрузки на энергоблоков Нововоронежской разработана АЭС программа НИОКР.

Срок реализации программы март 2022 года.

Акционерное общество «Российский концерн по производству электрической и тепловой энергии на атомных станциях»

(АО «Концерн Росэнергоатом»)

УТВЕРЖДАЮ Первый заместитель

Генерального директора

АО «Концери Росэнергоатом»

по эксплуатации АЭС

А.В. Шутиков

« 01 » апреля 2019 г.

Программа НИОКР ПРГ-ОНИОКР-19-52

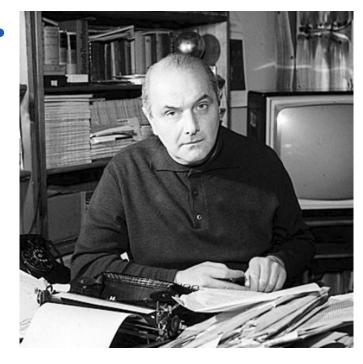
Работы по конструированию автоматизированных систем управления технологическими процессами AC.

Создание системы информационной поддержки оператора (СИПО) на энергоблоке №6 Нововоронежской АЭС

Функции СИПО

- Автоматизированное определение режима энергоблока (уровня ГЭЗ)
- Определение состояния энергоблока (работа на мощности, выход на МКУ, горячее состояние...)
- Автоматический выбор уставок сигнализации в зависимости от текущего состояния энергоблока
- Подавление вторичной сигнализации, являющейся следствием первичной сигнализации
- Контроль эксплуатационных пределов и условий эксплуатации
- Контроль пределов и условий безопасной эксплуатации
- Мониторинг состояния основного оборудования энергоблока
- Мониторинг систем безопасности
- Контроль автоматического управления оборудованием
- Прогнозирование состояния энергоблока в режимах НЭ
- (с помощью модели энергоблока)

Функции СИПО


- Реакция на сигнал
- Представление оперативному персоналу интерактивных инструкций по процедурам пуска/останова энергоблока, автоматизированное формирование оперативного журнала НСБ и протокола приема-сдачи смены.
- Представление оперативному персоналу интерактивных инструкций по процедурам ввода/вывода оборудования, регламентных проверок, опробований и испытаний.
- Представление оперативному персоналу электронного интерактивного аналога процедур по ликвидации нарушений нормальной эксплуатации в соответствии с ИЛН
- Представление оперативному персоналу электронных интерактивных аналогов процедур по управлению авариями в соответствии с ИЛА, РУЗА, РУТА
- Рекомендации по оптимизации управления технологическим процессом
- Дистанционное управление оборудованием энергоблока

Прошлое о будущем

Техника техникой, но лифт ломается чаще, чем лестница.

Станислав Ежи Лец.

Спасибо за внимание!