

Нейтронно-физические исследования характеристик топлива быстрых реакторов, включая топливо с минорными актинидами

Сообщение на Торжественном заседании научно-технического совета, посвященное 50-летию пуска БН-350

Хомяков Ю.С.

Содержание

- ✓ От идеи воспроизводства топлива к ЗЯТЦ
- ✓ Исследования нуклидной кинетики и выгорания уранового топлива
- Исследования кинетики нуклидного состава МОКС топлива с учетом его воспроизводства в обоснование уран-плутониевого топливного цикла
- ✓ Исследования в обоснование ториевого топливного цикла: воспроизводство урана-233 и накопление в нем урана-232
- ✓ Исследования в обоснование трансмутации минорных актинидов

От идеи воспроизводства к ЗЯТЦ (1)

БР-1: KB = 2.5 ± 0.2

без учета U²³⁸(n,f): KB = 2.0 ± 0.2

A. I. Leypunsky, I.I.Bondarenko et al. Experimental fast reactors in USSR // Proceedings of the 2nd International Conference for Peaceful Use of Nuclear Power, Geneva, 1958, Presentations of Soviet scientists, P/2129.

От идеи воспроизводства к ЗЯТЦ (2)

•

БН-350

Картограмма реактора БН-350

Схема ТВС, капилляра с образцами

Схема крепления

Комплексная гравирадиохимическая методика анализа состава топлива и образцов-свидетелей

Даты	Кол-во образцов	Состав образца	Зона
1973 –1976	9	U-235 (26%)	3БО
1973 –1976	7	U-235 (17%)	3MO
1973 –1976	22	Обедненый уран	3БО, ЗМО, Экран
Всего	38		

Основные каналы изотопных превращений и базовые цепочки описываются корректно.

Изотопный состав урана и его выгорание описывается с точностью 3%

Исследования образцов U-236 и Np-237

Даты	Кол-во образцов	Состав образца	Зона
1977-1978	2	U-236 (99.66%)	3БО, Экран
1977 - 1978	4	Np-237 (100%)	3БО, ЗМО, Экран
Всего	38		

Цель работы: определение накопления Pu-236 и сечения (n,2n) на Np-237

Основной результат: сечение (n,2n) в файлах ENDF/B завышено в ~ 2 раза

Исследования вставки с МОХ-топливом

Исследования влияния вставки с MOX топливом на распределение нейтронного поля в реакторе БН-350

Исследования МОКС топлива в БН-350

Даты	Кол-во образцов	Состав образца	Зона
1981	1	Pu-239 (95%)	3MO
1981	2	MOX (BBЭP) Pu-239 (74%)	3MO
1982 - 1983	9	MOX: 21% Pu, 79% U	7Pu (LEZ)

Изотопный состав плутония по основным изотопам описывается с точностью 5%

Для минорных изотопов (Am, Cm) уровень расхождений выше – 10% для Am и до 2 раз для Cm

Определен коэффициент ветвления реакции захвата ²⁴¹Am (Гончаров Р.К., Хомяков Ю.С.)

Исследования в обоснование ториевого цикла

Даты	Кол-во образцов	Состав образца	Зона
1987-1988	8	Оксид Th	Наружный экран
1990-1992	6	Металлический Th	Экран
1990-1992	1	Th	3MO
1990-1992	2	U-233	3MO
1990-1992	1	U-234	3MO

Изотопный состав урана-233 при облучении тория описывается с точностью 20% (U-232 -12%)

При облучении урана-233 точность выше :1-4%

Исследовано накопление U-232 при облучении в различных зонах БН-350: минимальное накопление в глубоких слоях бокового экрана

Исследования по трансмутации МА (1)

Даты	Кол-во образцов	Состав образца	Зона	Основной нуклид	Выгорание основного нуклида	Накопление дочерных нуклидов	Выгоран ие
1990-1992	1	Np-237	ЗМО	Am-241	35%	25.5%	9.5%
1990-1992	2	Am-241	3MO	Np-237	35%	25%	10%
1990-1992	1	Pu-238	ЗМО	Cm-244	44%	33%	10%
1990-1992	2	Pu-240	3MO	Pu-240	20%	9%	11%
1990-1992	2	Cm-244	3MO	Pu-238	34%	12%	22%

Исследования трансмутации Ат

Изотоп	BNAB-90	BNAB-93	BROND3	ENDF/B6.r7	JENDL3.3
Pu-238	0.94	0.97	1.11	0.92	0.89
Pu-239	0.77	0.79	0.93	0.73	0.73
Pu-242	1.01	1.05	1.20	0.96	0.95
Am-241	1.00	1.00	1.00	1.00	1.00
Am242m	1.30	1.26	1.16	1.25	2.25
Am-243	0.88	0.87	0.93	0.83	1.29
Cm-242	1.09	1.07	0.99	1.06	1.87
Cm-243	0.76	0.73	0.84	0.45	0.61
Cm-244	0.43	0.59	0.60	0.54	0.88

Эксперимент подтвердил суммарное выгорание тяжелых атомов ~9.1-9.5%

Выжигание МА сопровождается большой вероятностью образования вторичных актинидов: ~26-28%

Исследования трансмутации Np, Pu-238

	²³⁷ Np, ячейка 89]	2	²³⁸ Pu		Сопутствующие нуклиды	
Нуклид	Деление, (выгорание) т.а.	Накопление дочерних актинидов	Нуклид	Деление, выгорание	Накопление вторичных актинидов	Деление, выгорание	Накопление вторичных актинидов	
²³⁴ U	-	1.3%	²³⁴ U	0.7%	4.7%	-	-	
²³⁷ Np	6.5%	-	²³⁸ Pu	20.7%	-	-	-	
²³⁸ Np	0.04%	-	²³⁹ Pu	1.5%	7.1%	6.2%	-	
²³⁶ Pu	-	~ 2.5·10 ⁻⁵ %	240 P U	_	0.4%	0.3%	0.9%	
²³⁸ Pu	3.6%	21.9%	241 Du		0.170	0.0%	0.070	
²³⁹ Pu	0.2%	1.3%	241Pu	-	-	0.3%	-	
²⁴⁰ Pu	-	0.05%	²⁴¹ Am	-	-	-	0.2%	
Сумма	~10.3%	~24.6%	Сумма	~22.3%	~12.3%	~6.8%	~1.1%	
Трансмутация основного нуклида ~34.9%		Транс- мутация нуклида	~3	34.6%	~7	′.9%		

Для быстрых реакторов эффективен путь трансмутации МА путем превращении Am и Np в Pu

Получение отношений сечений на актинидах по результатам анализа состава топлива БН-350

- Разработана методика и получены важные индексы, которые невозможно прямо измерить другими способами (величина ²³⁹α)
- Полученные результаты являются опорными для российской системы констант БНАБ

		БНАБ-93	БНАБ-93	БНАБ-93
Изотоп	$\sigma_{\rm x}/\sigma_{\rm f5}$	2140	250	MOX
		31010	360	подзона
U-235	α	-2 ± 3	10 ± 4	-
11.006	fiss	4 ± 5	1 ± 5	0 ± 6
0-230	capt	5 ± 5	-	-
	fiss	3 ± 3	3 ± 5	2 ± 4
U-238	capt	-1 ± 3	1 ± 3	0 ± 4
	n,2n	-5 ± 11	10 ± 10	-
	fiss	4 ± 4	-2 ± 5	3 ± 5
Np-237	capt	-	-3 ± 6	-
	n,2n	4 ± 6	2 ± 6	-
	fiss	1 ± 3	0 ± 3	0 ± 4
Pu-239	α	2 ± 4	15 ± 6	1 ± 3
	n,2n	-	-	-6 ± 7
Du 240	fiss	3 ± 5	4 ± 5	-
Fu-240	capt	0 ± 5	-	9 ± 6
Pu-241	α	-8 ± 11	-	1 ± 6
Am-241	capt	0 ± 8	-	-11 ± 5

Облучательные эксперименты в мире

	EBR-II,	PFR,	PHENIX,	JOYO,	BN-350,
Nuclide	США	Великобритания	Франция	Япония	Россия
Th-232	Х	Х	Х		Х
U-233	Х	Х	Х		Х
U-234		Х	Х		Х
U-235	Х	Х	Х		Х
U-236		Х			
U-238	Х	Х	Х		Х
Np-237	Х	Х	Х	Х	Х
Pu-238		Х	Х		Х
Pu-239	Х	Х	Х		Х
Pu-240	Х	Х	Х		Х
Pu-241	Х	Х	Х		
Pu-242		Х	Х		
Am-241		Х	Х	Х	Х
Am-243		Х	Х	Х	
Cm-243		Х			X
Cm-244		Х	Х	Х	Х

Ведущие ученые и специалисты

- ✓ Троянов М.Ф. директор ФЭИ
- ✓ Казанский Ю.А. начальник отдела 19
- ✓ Звонарев А.В. начальник лаб. 53
- ✓ Сметанин Э.Я. начальник радиохимического отдела
- ✓ Павлович В.Б. СНС
- ✓ Скориков Н.В. начальник лаборатории БН-350
- ✓ Николаев М.Н. и специалисты лаб. 103
- ✓ Бушуев А.В. и коллеги МИФИ
- ✓ Специалисты НИИАР

Спасибо за внимание !

Хомяков Юрий Сергеевич

Начальник отдела науки АО «Прорыв», доктор физ.-мат. наук

Моб. тел.: +7 (926) 371 05 51 E-mail: hus@proryv2020.ru www.proryv2020.ru Июнь 2022 г.