

Разработка новых методик контроля урановых материалов

Круглый стол отечественного Ядерного общества АО «МСЗ», г. Электросталь

Орлова Майя Олеговна Инженер-химик

Акционерное общество «Уральский электрохимический комбинат» (АО «УЭХК») является крупнейшим в мире предприятием по производству обогащенного гексафторида урана (ГФУ) для нужд атомной энергетики.

Основные направления деятельности:

- Производство обогащенного уранового продукта
- Предоставление услуг по комплексному обслуживанию контейнеров
- Производство стандартных образцов изотопного состава урана

Начало работ

- В производственную программу АО "УЭХК" на 2023 год в соответствии с письмом АО «ТВЭЛ» включено производство новой продукции ЗОУ средних обогащений.
- На основании «Программы отработки технологического процесса получения из гексафторида урана закиси-окиси урана, соответствующей физико-химическим показателям ТУ 95 505-2012» перед центральной заводской лабораторией (ЦЗЛ) АО «УЭХК» была поставлена задача в кратчайшие сроки организовать аналитическое обеспечение наработки ЗОУ.
- Для выполнения задачи специалистами ЦЗЛ был проведен анализ массива аналитических методик, приведенных в ТУ 95 505, для определения полной удельной поверхности, содержания фтора, изотопов урана, бора, азота, фосфора, кремния, нептуния, плутония, технеция.
- Изучена практическая возможность измерения изотопного состава урана, азота, фтора, бора, фосфора, кремния, технеция различными методами, организованы и проведены предварительные измерения по имеющимся методикам ЦЗЛ и методикам, приведенным в ТУ 95 505.
- Принято решение разработать и аттестовать в ранге СТО методики определения содержания фтора, азота, кремния и фосфора в ЗОУ с учетом требований ТУ 95 505.

Цель работы

Разработать и аттестовать в ранге СТО методики определения содержания фтора, азота, кремния и фосфора в ЗОУ с учетом требований ТУ 95 505.

Задачи исследований

- 1. Изучить существующие нормативные документы (СТК, ОСТы, МВИ и др.) по определению содержания фтора, азота, кремния и фосфора в ЗОУ;
- 2. Провести анализ возможности выполнения работ в ЦЗЛ АО «УЭХК» (наличие оборудования, инструментов, реактивов, материалов, необходимого уровня квалификации персонала);
- 3. Определить диапазон определяемых содержаний, выбрать оптимальные условия определения, провести экспериментальные работы, набрать статистические данные для аттестации методик;
- 4. Оценить аналитические и метрологические характеристики разработанных методик, аттестовать их по установленной в АО «УЭХК» процедуре.

Процесс разработки методик

-	-		
Наименование разработанной методики	СТО 16.454-2023 Фтор. Методика спектрофотометрического определения содержания в закиси-окиси урана	СТО 16.457-2023 Кремний. Фосфор. Методика масс-спектрометрического с индуктивно-связанной плазмой определения содержания в закиси-окиси урана	СТО 16.460-2023 Азот. Методика спектрофотометрического определения содержания в закиси-окиси урана
Диапазон определяемых массовых долей элементов, мкг/г урана	От 10 до 250	От 30 до 300	От 10 до 300
Методики, взятые за основу при разработке	СТК-82-2018 «Уран. Методики измерения содержания примеси фтора» ОСТ 95 833-2003 «Стандарт отрасли. Уран. Методики измерения содержания примеси фтора»	Аналогов не найдено	СТО 16.427-2020 «Азот. Методика спектрофотометрического определения в ГФУ» СТК-58-2016 «Уран. Фотометрическая методика измерения содержания примеси азота» ОСТ 95 830-2003 «Уран. Фотометрическая методика измерения содержания примеси азота»

Недостатки существующих методик

- 1. Высокая трудоемкость и продолжительность выполнения анализа.
- 2. Неоптимальная процедура пробоподготовки (отбор навески ЗОУ в зависимости от предполагаемого содержания элемента в пробе, способы разложения пробы).
- 3. Невозможность выполнения анализа в ЦЗЛ из-за отсутствия необходимого оборудования, стандартных образцов, реактивов.

Исследования, проведенные для разработки методик

- 1. Выбор оптимальной массы навески пробы ЗОУ для определения кремния, фосфора, фтора и азота.
- 2. Исследование различных способов растворения навески пробы ЗОУ (микроволновое разложение пробы, растворение на кипящей водяной бане, растворение при нагревании на плите) для определения кремния, фосфора и фтора.
- 3. Исследование мешающего влияния алюминия и фосфора в пробе ЗОУ на определение фтора.
- 4. Исследование линейности градуировочной зависимости оптической плотности раствора от содержания элемента в пробе для разных концентраций фтора и азота в градуировочных растворах.
- 5. Выбор оптимальных параметров работы масс-спектрометра с ИСП мощности и расхода газа для определения кремния и фосфора.
- 6. Исследование влияния рН анализируемых растворов на определение кремния.

Определение содержания фтора в закиси-окиси урана спектрофотометрическим методом

Процедура анализа включает в себя:

- 1. Отбор навески пробы ЗОУ m = 0,1г. по урану.
- 2. Растворение навески 3ОУ в концентрированной HNO₃ при слабом нагревании на плите.
- 3. Добавление к полученному раствору сульфаминовой кислоты NH₂SO₃H, хлорокиси циркония ZrOCl₂ и индикатора ксиленолового оранжевого с образованием цирконий-ксиленолового комплекса, имеющего оранжевую окраску. При взаимодействии комплекса с ионами фтора в солянокислой среде происходит его разрушение с образованием гексафтороцирконата (IV).
- 4. Измерение содержания фтора в растворе спектрофотометрическим методом. Интенсивность окраски полученного соединения обратно пропорциональна концентрации фтора.
- 5. Методика измерений оформлена в виде СТО 16.454-2023.

Определение содержания азота в закиси-окиси урана спектрофотометрическим методом

200

Процедура анализа включает в себя:

- 1. Отбор навески пробы 30У m = 1г. по урану.
- 2. Загрузка навески ЗОУ в дистилляционный аппарат, восстановление нитратной формы азота до аммиака (NaOH, Zn порошок, сплав Деварда) при слабом нагревании и последующий отгон (отделение) аммиака в приемник с серной кислотой 0,1н.
- 3. Добавление к полученному раствору реактива Несслера с образованием йодистого меркураммонийного комплексного соединения, имеющего жёлтокоричневую окраску.
- 4. Измерение содержания азота в растворе спектрофотометрическим методом. Интенсивность окраски полученного соединения пропорциональна концентрации азота.
- 500 CM

Определение содержания кремния и фосфора в закиси-окиси урана методом ИСП-МС

Процедура анализа включает в себя:

- 1. Отбор навески пробы ЗОУ m = 0,1г. по урану.
- 2. Растворение навески 3ОУ в концентрированной HNO_3 при слабом нагревании на плите (при необходимости), либо микроволновое разложение проб.
- 3. Измерение содержания кремния и фосфора в растворе на масс-спектрометре с индуктивно-связанной плазмой.
- 4. Методика измерений оформлена в виде СТО 16.457-2023.

Аналитические и метрологические характеристики разработанных методик

Определяемый элемент	Методика	Диапазоны определяемых содержаний, мкг/г U	Суммарная погрешность МВИ, ±%, P=0,95, n=2	Длительность проведения анализа ЗОУ, час.
Азот	Спектрофотометрия	От 10 до 30 включ. Свыше 30 до 250 включ.	48 18	3
Фтор	Спектрофотометрия	От 10 до 30 включ. Свыше 30 до 300 включ.	48 24	3
Кремний	ИСП-МС	От 30 до 90 включ. Свыше 90 до 300 включ.	24 11	4
Фосфор		От 30 до 90 включ. Свыше 90 до 300 включ.	19 10	

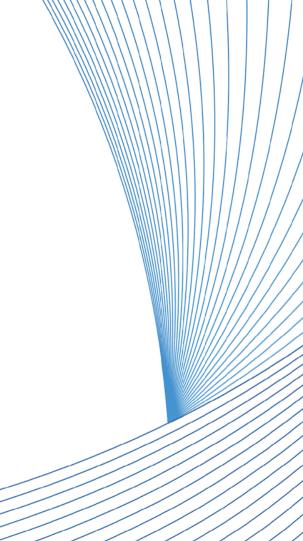
Выводы

1. Проведены исследования и разработаны НОВЫЕ, эффективные методики определения примесных элементов в ЗОУ.

2. Методики аттестованы в ранге стандартов организации и оформлены в виде СТО 16.454-2023, СТО 16.457-2023 и СТО 16.460-2023.

3. Методики успешно внедрены в аналитическую практику ЦЗЛ АО «УЭХК» и позволили аттестовать пробную партию товарной ЗОУ на высоком уровне качества.

Спасибо за внимание


Орлова Майя Олеговна

Инженер-химик

Тел.: +7 (343 70) 5 67 49 Моб. тел.: +7 (961) 771 69 21 E-mail: MOOrlova@rosatom.ru

www.rosatom.ru

