

Термомеханическая стабильность ТВС и АЗ ВВЭР: от решённых проблем к ТВС-5 и ВВЭР-С

В.М. Троянов

Научный руководитель АО «ГНЦ РФ – ФЭИ»

Объект исследований: активная зона и ТВС

РАЗРАБОТКА МЕТОДИКИ И АЛГОРИТМОВ РАСЧЕТА ТЕРМОМЕХАНИКИ ТВС И АКТИВНЫХ ЗОН ВВЭР-1000 ДЛЯ НОРМАЛЬНЫХ УСЛОВИЙ ЭКСПЛУАТАЦИИ

Рисунок 1.1 – Схема расположения ТВС в активной зоне

Рисунок 1.5 – Усовершенствованная ТВС (УТВС) реактора ВВЭР-1000

реактора и картограмма загрузки зоны

разработки ОКБ «Гидропресс»

Опыт эксплуатации того времени

Рисунок 3.30 – Типичные результаты измерений: расположение прогибов ТВС в сечениях по высоте 1400 мм (слева) и 2400 мм (справа) от низа активной зоны 1 блока Балаковской АЭС до перегрузки в ППР-2000

Разобраться и устранить !

Одновременно дано двум группам специалистов с условием состязательности.

Довольно легко было установить, что проблема вызвана недостаточной изгибной жёсткостью ТВС в условиях рабочих температур и нейтронного потока, термомеханической нестабильности ТВС и группы ТВС в составе а.з.

В равной степени проблема проявилась как для ТВС со стальным каркасом, так и для ТВС с циркониевым каркасом.

Вопрос заключался в том – какими мерами можно исправить положение?

Выполнение поручения Будылина

- Понять и описать физические процессы
- Поставить задачу и предложить методы её решения
- Разработать алгоритмы и расчётные коды
- Разработать программу тестирования расчётных кодов с помощью испытаний экспериментальных моделей
- Разработать программу получения экспериментальных количественных характеристик моделей и составных частей
- Выполнить программы экспериментальных исследований и верифицировать расчётные коды
- Разработать методики расчёта термомеханики не только в условиях нормальной эксплуатации, но и в режимах динамического и неизотермического нагружения
- Выполнить расчёты в объёме, необходимом для обоснования конструкции ТВС в режимах нормальной эксплуатации и авариях
- Обеспечить совместимость старой и новой конструкции
- Поставить на производство

Для расчета необходимо рассматривать взаимодействие всех элементов активной зоны с учетом истории нагружения и влияния внешних опор – выгородки и закреплений концов ТВС.

Основными нагружающими факторами при этом являются:

· термомеханическое взаимодействие ТВС друг с другом в неоднородных температурных и нейтронных полях;

· изгиб ТВС под облучением вследствие радиационного формоизменения стержней и действия осевой силы;

· изменение формы ТВС под действием контактных сил со стороны соседних ТВС в условиях радиационной ползучести.

Дистанционирующая решетка ТВС

Поперечное сечение балки, представляющей ТВС

Схема балки, аппроксимирующей ТВС

Расчетная схема продольно-поперечного изгиба твэлов

Расчетная схема продольно-поперечного изгиба НК

В модели продольного изгиба ТВС учитываются следующие факторы:

- удлинение твэлов и НК от радиационного роста, храповых механизмов, ползучести и температурных расширений;

- расслабление начальных натягов в твэльных ячейках вследствие релаксации напряжений в пружинных элементах ДР и осаживания твэльных оболочек избыточным внешним давлением, а также изменение начальных натягов в ячейках НК, вызванное релаксацией напряжений;

- возможность проскальзывания твэлов и НК в решетках, если силы проталкивания превышают силы трения в ячейках ДР, при этом жесткость балки изменяется в соответствии с изменением областей проскальзывания.

1.3 Функциональные зависимости исходных данных для расчета продольно-поперечного изгиба ТВС

1.3.1 Функции давления пружинных элементов ДР на твэлы и НК и сил трения в ячейках

Рисунок 1.13 – Схема нагружения твэльных ячеек ДР после сборки

Рисунок 1.14 – Схема нагружения НК при повороте в плоскости YOZ

Рисунок 1.15 – Конечноэлементная модель для расчета поперечной жесткости твэльной ячейки. Первая

расчетная модель

Рисунок 1.24 – Конечно-элементная модель гнезда НК с двумя рядами соседних ячеек

Рисунок 1.21 - Распределение интенсивности напряжений в твэльной ячейке ДР после сборки с натягом $\Delta_{\rm R} = 0,08$ мм

Рисунок 1.28 – Схема нагружения верхних сварных точек панелей ячеек, окружающих гнездо НК, при повороте НК в плоскости YOZ по часовой стрелке (при взгляде навстречу оси OX)

Рисунок 1.32 – Изменение во времени усилий Q в узлах на линии пуклевки. Верхняя линия показывает суммарное усилие по пяти узлам

Программа экспериментальных исследований

Обозна-	Высо	Каркас	Шаг	Средний	Поверхность	Пуля	Усилие
чение	та		ДР, мм	диаметр	твэлов	при	установки
	ДP,			твэлов		сборке,	твэлов,
	MM			D _т , мм		MM	кгс
1	2	3	4	5	6	7	8
A1t	20	трение	255				
А2т	20	трение	285				
Б1т	30	трение	250				
Б2т	30	трение	280				
A1	20	сварка	255				
A2	20	сварка	285				
Б1	30	сварка	250				
Б2	30	сварка	280				
B1	30	сварка,	250				
		втулка					
мА1	20	сварка	255	9,115	анодирован	нет	7-12
мА2	20	сварка	285	9,125	сост.поставки	нет	7-15
мБ1	30	сварка	250	9,125	сост.поставки	9,45	5-12
мБ2	30	сварка	280	9,125	сост.поставки	нет	10-20
мВ1	30	сварка,	250	9,115	анодирован	нет	5-12
		втулка			-		
Д1т	30	трение	250				
Д2т	30	трение	280				
Е1т	30	трение	250				
Е2т	30	трение	280				
Д1	30	сварка	250				
Д2	30	сварка по	280				
		2 точ					
E1	30	сварка	280				
E2	30	сварка по	280				
		2 точ					
мД1	30	сварка	280	9,125			
мД2	30	сварка по	280	9,125			
		2 точ					
мЕ1	30	сварка	280	9,125			
мЕ2	30	сварка по	280	9,125			
		2 точ					

Протягивание твэла

Продавливание НК

Поворот имитатора НК в ДР

Поворот имитатора твэла в ДР

Изгиб укороченного макета каркаса и пучка ТВС в поперечном направлении

Испытания дистанционирующих решеток ТВС-2 на сжатие

Схема нагружения ДР при испытаниях на сжатие

а) – ДР Е1 без имитаторов твэлов,
б) – ДР Е4 с имитаторами твэлов

Исполнение	Р _{упр} ,	L _{упр} ,	k,	P _{max} ,	L _{KOH} ,	Δa,	Δb,	Примечание
ДР	кгс	ММ	кгс/мм	кгс	MM	MM	MM	
А	170290	3,04,0	46-75	365-465	-	-	-	без имитаторов
Д1	740	3,6	206	1084	12,2	-2,8	2,2	без имитаторов
Д2	760	3,6	211	1105	17,4	-6,4	5,1	с имитаторами
E1	900	4,0	225	1035	9,0	-2,7	2,5	без имитаторов
E2	720	3,8	189	1059	11,2	-2,4	2,2	без имитаторов
E3	700	3,4	206	1068	17,2	-6,0	4,3	с имитаторами
E4	800	4,0	200	1100	15,4	-6,0	3,7	с имитаторами
E5	760	4,0	190	1124	11,4	-3,5	2,8	с имитаторами

Тестирование расчетов изгибов ТВС с помощью испытаний макетов полномасштабных кассет

в)
 Рис.3.26 – Сравнение расчетных кривых деформирования УТВС с экспериментальными данными

Расчеты активных зон конкретных энергоблоков Гистограммы прогибов и межкассетных зазоров

Рисунок 3.35 – Конец 12-й топливной кампании. Гистограмма прогибов кассет в активной зоне в сечении H = 1400 мм

Рисунок 3.36 – Конец 12-й топливной кампании. Гистограмма прогибов кассет в активной зоне в сечении H = 2400 мм

Рисунок 3.37 – Гистограмма межкассетных зазоров для сечения 0,5 На.з. Конец 12-й топливной кампании Рисунок 3.38 – Гистограмма межкассетных зазоров для сечения 0,8 На.з. Конец 12-й топливной кампании

Рисунок 3.39а) – Гистограмма прогибов в сечении 1400 мм Конец 12-й топливной кампании Рисунок 3.396)– Гистограмма прогибов в сечении 2800 мм Конец 12-й топливной кампании

Рисунок 4.2 – Проекция изогнутых осей. Случай исходных собственных прогибов кассет

Рисунок 4.3. Гистограмма прогибов кассет в активной зоне на уровне 7-й ДР. Случай исходных собственных прогибов кассет

Рисунок 4.4. Гистограмма зазоров между гранями ДР на уровне 7-й ДР. Случай исходных собственных прогибов кассет

РАСЧЕТНЫЕ ИССЛЕДОВАНИЯ ПРОЧНОСТИ УЗЛОВ ТВС-2 ПРИ ТЕРМОМЕХАНИЧЕСКОМ НАГРУЖЕНИИ В ПРОЦЕССЕ ИЗГОТОВЛЕНИЯ И ЭКСПЛУАТАЦИИ

Расчетные модели

Одним из важных факторов нагружения узлов ТВС-2 в процессе эксплуатации является несогласованное удлинение твэлов и направляющих каналов, в первую очередь на переходных режимах вследствие существенно большего удлинения (или укорочения) топливного столба по сравнению с твэльной оболочкой (эффекты "осевого храповика" твэлов.

Рисунок 5.1 - Изменение длины РТФ 34 в процессе изменения мощности ОУ

Изменение контактных усилий взаимодействия твэлов с пуклевками ячеек ДР в процессе эксплуатации

Расчет на прочность узла соединения НК и ДР каркаса

Анализ нагружения элементов сварного каркаса TBC-2 в процессе эксплуатации показал, что прочность каркаса в значительной мере определяется возможностью среза и отрыва сварных точек, связывающих направляющие каналы и дистанционирующие решетки

Прочность узлов крепления твэлов в нижней решетке ТВС-2

В процессе эксплуатации тепловыделяющих сборок УТВС в реакторах ВВЭР-1000 были обнаружены случаи нарушения работоспособности узлов фиксации твэлов в нижних опорных решетках (НР). Наблюдались расфиксация и выдергивание твэлов из НР, отлом и большой износ частей "ласточкиного хвоста", фиксирующего твэл и др. Причиной выдергивания твэлов из НР может быть несогласованное удлинение (укорочение) отдельных твэлов на нестационарных режимах работы реактора (выход на мощность, расхолаживание, срабатывание АЗ и др.), обусловленное срабатыванием эффекта вышеупомянутого "осевого храповика". Прочность узла крепления направляющих каналов в нижней решетке

Рисунок 5.8 – Схема нагружения НК после сборки всего пучка

Расчет на прочность узла соединения НК с НР на нестационарных режимах работы реактора

Рассмотрим вначале нестационарные режимы работы активной зоны, на которых идет нагрев твэлов и НК (пуск реактора, повышение мощности на нестационарных режимах). Наибольшие нагрузки, вырывающие НК из НР при нагревании твэлов, имеют место в том случае, если в твэлах топливные стержни жестко связаны с оболочками и поэтому удлинения твэлов на переходном режиме могут достигать больших величин (до 10÷ 15 мм) – срабатывает "осевой храповик"

Изменение усилий в пролетах НК (отсчет сверху) на переходных режимах нагрева при одновременном срабатывании "осевого храповика" в 50% твэлов в процессе эксплуатации Смещения кассет и проекции изогнутых осей кассет на вертикальную плоскость, проходящую через проектные положения центров ТВС, для двух направлений ударов

- Рассказал далеко не всё!
- Рассказал достаточно, чтобы показать заинтересованным лицам, что при разработке новой конструкции бесчехловой ТВС очень легко совершить грубую ошибку, в результате которой могут произойти отказы неработоспособной конструкции с неприятными последствиями.
- Не важно будет ли новая конструкция использовать стальные твэлы и каркасы, либо циркониевые. И в той, и в другой будет происходить релаксация напряжений вследствие радиационной ползучести, и в той и в другой находятся твэлы, испытывающие термомеханическое удлинение, и в той, и в другой твэлы стремятся разорвать каркас и проскальзывать в ячейках.
- Если сила трения не равна нулю, то осевые нагрузки легко могут повредить места закрепления как твэлов, так и каркасных труб
- Формоизменение ТВС всегда создаёт опасность застревания РО СУЗ

В настоящей презентации использованы только опубликованные материалы в журналах «Известия вузов. Ядерная энергетика №2 и №3, 2002», а также на международных семинарах в Ржеже в 1998 году и Кадараше в 2005 году.
 Спасибо за внимание