Направления развития АСММ

Преимущества малых АЭС в изолированных и труднодоступных территориях (ИТТ)

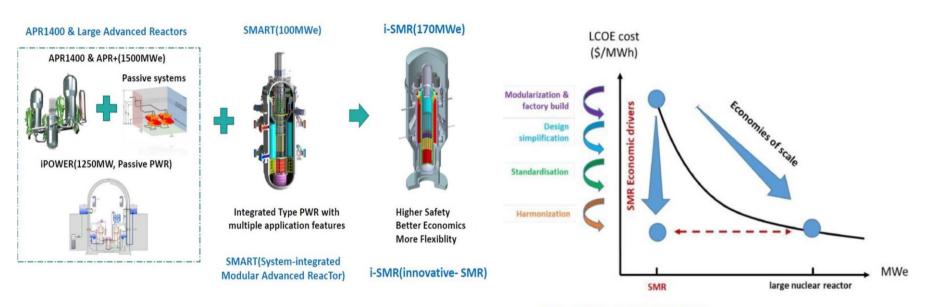
Цель: Эффективный источник энергии для обслуживания/развития инфраструктуры Северного морского пути и нужд МО РФ, активных энергетических комплексов (вне структуры EЭC), развития труднодоступных регионов

Параметры проектов АСММ зарубежного дизайна

АСММ	Nэл. (МВт) / Nт. (МВт)	Р ₁ (МПа) / Т₁ (⁰С)	P ₂ (МПа) / Т ₂ (°C)	Рконт. (МПа)	CDF 1 / р.*год	LRF 1 / р.*год	Сейсмика	Циркул.
CAREM IPWR, Аргентина	~30 / 100	12,25 / 284-326	4.7/-	0,5	10 ⁻⁷	-	0,25 g	NC
Nu Scale IPWR, США	50 / 160	12,8 / 310	3,4/306	5,5	10-8	-	0,5 g	NC
ACPR50S петлев. PWR, KHP	60 / 200	15,5 / 299-322	-	1,4	10-6	10-8	-	FC
ACP 100 IPWR, KHP	100 / 310	15.0 / 283-323	4.0 / 290 °C	-	10-7	10-8	0,3 g	FC
SMART IPWR, Корея	100 / 330	15,0 / 296-323	5,0/-	0,34	2 x 10 ⁻⁷	-	0,18 g	FC
CAP 150 IPWR, KHP	150 / 450	15.5 / 290-310	-	-	3.5 x 10 ⁻⁸	10-9	0,3 g	FC
SMR-160 PWR, США	160 / 525	15.5 / 196-316	2.26 / перегрев 77°C	-	-	-	-	NC
mPower IPWR, США	195 / 575	14.8 / 291-319	-	-	10-8	-	-	FC
CAP 200 PWR, KHP	200 / 660	15,5 / 289-313	6,02/-	-	10 ⁻⁶	10 ⁻⁷	-	FC
SMR IPWR, США	225 / 800	15,5 / 294-324	-	-	5 x 10 ⁻⁸	-	-	FC
DMS BWR, Япония	300 / 840	7.17 / 186-287	-	-	5 x 10 ⁻⁸	-	0,45 g	NC

Параметры проектов АСММ зарубежного дизайна

AC MM	Цена \$/КВт / с/КВтч	Срок строит. (мес.)	Срок службы (лет)	Топл. цикл (мес.)	СБ	Автономн. при ЗПА (час)	Особенности
CAREM IPWR, Аргентина	-	36	60	14	2 канала пассив.	36	-
Nu Scale IPWR, США	3600-10000/-	36	60	24	2 канала пассив.	>72 при SBO - ∞	РУ и 3О в воде ниже уровня земли
ACPR50S PWR, KHP	7900 / 19	36	40	30	2 канала пассив	>168	-
ACP 100 IPWR, KHP	5000*	36	60	24	2 канала пассив	от 72 до 336	РУ под землей
SMART IPWR, Корея	10000**/4,5	36	60	36	4 канала пассив	>72 при SBO – 20 суток	Электричество и вода для города 10 ⁵ человек
CAP 150 IPWR, KHP	-	36	80	36	4 канала пассив	> 168	РУ под землей
SMR-160 PWR, США	-		80	24	2 канала пассив.	В 3О воды на > 60сут	-
mPower IPWR, США	-	35	60	24	2 канала пассив	Зона 7-14 суток > 72 3О	БВ под землей автономность 30 суток
CAP 200 PWR, KHP	-	36	60	24	пассив	от 168 до 336	Конт. под землей
SMR IPWR, США	-	18-24	60	24	3 канала пассив	>168	100% байпас турбины
DMS BWR, Япония	≈ как ABWR	24	60	24	3 актив. + 1 пассив.	>168	-1


Основные тенденции развития АСММ в России и за рубежом. Параметры конкурентоспособности

- 1. Безопасность существенное повышение
 - Снижение CDF до 10-7 и LRF до 10-9
 - Автономность (включая БВ) при ЗПА неделя и до бесконечности
 - Кардинальное упрощение СБ
- 2. Понижение параметров первого и второго контура рост надежности, упрощение
- 3. Подземное расположение защита от падения самолета, подпитка водой СБ
- 4. Применение естественной циркуляции для теплосъема в активной зоне
- 5. Продолжительность топливного цикла 24-36 месяцев
- 6. Срок строительства 24-36 месяцев
- 7. Кардинальное повышение эффективности оборудования турбинного острова
- 8. Границы планирования АМ в пределах площадки
- 9. Требования к АСММ определяются потребителем, т.е. от системы выдачи мощности, тепловой энергии и т.д.
- 10. Использование цифровых двойников при проектировании и оптимизации АСММ
- 11. Аддитивные технологии, ИНС, предиктивная аналитика, двигатели Стирлинга

Направления оптимизации АСММ в Ю.Корее

[Ref.: NEA No. 7560, OECD 2021]

Перспективные проекты АСММ (Россия). Есть отличия по параметрам. Требуется дополнительный анализ

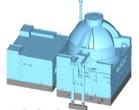
Сопоставление АС: малые только по мощности

Для сравнения строительных объёмов принято равенство функциональности систем основного процесса генерации и СБ, размещённых в представленных зданиях

БH-1200М

20 τ, 215 м/c (ΠΑ) 400 τ, 150 м/c (3ΠΑ)

ЛАЭС-2



440,80 тыс.м³ 440,82 тыс.м³

Реакторное Здания реактора, паровой отделение, БВ, камеры, безопасности, БПУ, обстройка управления и вспомогательный корпус

КурАЭС-2

√ БКС 20 т

536,00 тыс. м³

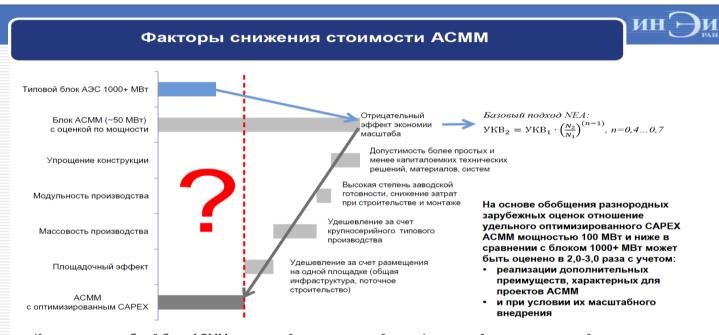
Здание реактора, вспомогательное реакторное здание, РПУ МБИР

РИТМ-200Н ШЕЛЬФ-М

здание

Здание реактора, Здание реактора, инженерные корпуса вспомогательное

В соответствии с обязательным требованием НП-064-17 при расчете зданий и сооружений атомных станций на воздействие от падения самолета необходимо принимать динамическую нагрузку, соответствующую самолету массой не менее 5 т.


Заключение (из Отчета рабочей группы по АСММ, декабрь, 2020)

- Для дальнейшей разработки и фактической реализации в качестве автономного энергетического источника в диапазоне мощностей до 1 до 3 МВт электрических предлагаются концепции транспортабельных (транспортируемых) энергетических источников с ядерными реактором и системой преобразования на базе традиционных ТГУ (водоохлаждаемые РУ) и на базе ГТД (высокотемпературные реакторы). Необходимо в рамках ЕОТП проработать данные концепции, провести ТЭИ и обосновать выбор единой концепции для дальнейшей проработки.
- Выполненный анализ зарубежной литературы и результаты расчетных исследований, проведенных во ВНИИАЭС позволяют сформулировать следующие требования к АСММ мощностью 4-12 МВт и более:
- теплоноситель ЖМТ или ЖСР. Позволяет отводить остаточные тепловыделения к стенке корпуса без кипения и далее к окружающему воздуху и отказаться от каналов безопасности;
- рабочее тело диоксид углерода сверхкритических параметров, работающий по циклу Брайтона. Позволяет в разы сократить весогабаритные характеристики и упростить систему управления машзалом;
- вместо аварийных дизель-генераторов использовать генераторы с двигателем Стирлинга;
- вместо аварийных аккумуляторных батарей использовать ТЭГи;
- отечественная система управления с привлечением нейронных сетей и элементов предиктивной аналитики, позволяющая надежно эксплуатировать энергоблок с прогнозированием остаточного ресурса до ремонта.
- Начиная со стадии разработки концепции ЯЭУ и для проведения более полных ТЭИ необходимо применение технологии цифрового двойника, которая позволяет снизить сроки разработки проекта АСММ, обеспечить значительное снижение весогабаритных характеристик путём оптимизации технических решений, снизить сроки производства и себестоимость модулей АСММ.

Из презентации ИНЭИ, февраль 2023

- Конкурентоспособный блок ACMM массовый промышленный, платформенный продукт с высокой степенью модульности, адаптируемый под конкретный заказ
 - Если серийность крупных блоков АЭС сопоставима с серийностью ракет-носителей (единицы в год)
 - То серийность блоков АСММ может быть сопоставима с серийностью авиалайнеров (десятки в год)

Повышение надежности и естественной безопасности при снижении параметров ACMM. Упрощение TC. Снижение LCOE

Зависимость КТП от давления

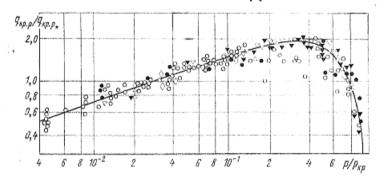
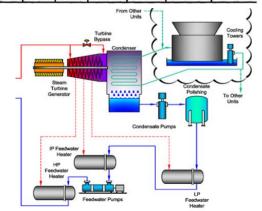
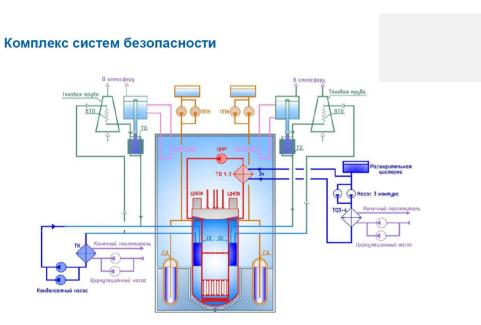



Рис. 12.16. Зависимость первой критической плотности теплового потока от давления [5]:

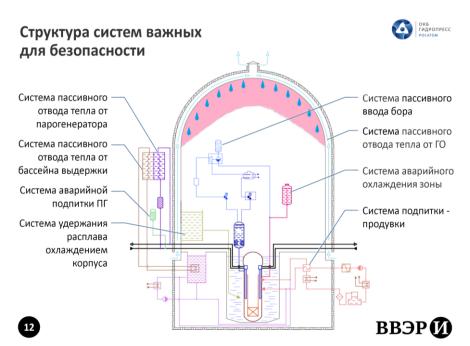
О — вода; • — этпловый спирт; △ — бензол; ○ — гентан; ▽ — метпловый спирт;
¬ пропиловый спирт.

Инверсия влажности при дросселировании пара

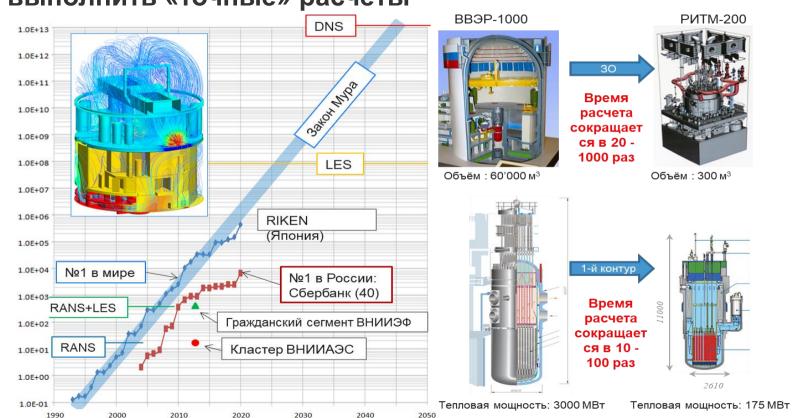

25 A 2000	Давление пара, МПа			ия пара, к/кг	зования	ности пара	
Турбина	в паро- генера- торе	перед турби- ной	в паро- генера- торе	перед турби- ной	для давления перед турбиной, кДж/кг	селирова-	
K-70-29	3,2	2,9	2801,8	2801,8	1802,3	0	
K-220-44	4,6	4,3	2795,2	2797,2	1681,7	+0,119	
K-1000-60/1500	6,26	5,88	2778,8	2783,3	1569,4	+0,285	
	CONTRACTOR OF THE PARTY OF THE					A STATE OF THE PARTY OF THE PAR	

ВВЭР-1200 и РИТМ-200Н. Найди 10 отличий. Конфигурации СБ похожи

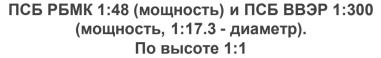



АСММ на базе РУ ШЕЛЬФ-М. Обликовые решения (из презентации Куликова Д.Г. на Дне безопасности, октябрь 2022)

ВВЭР-И: одна РУ в 3О; Билибинская АЭС: 4 РУ в одном здании

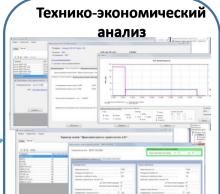


АСММ: сокращение затрат на расчетное обоснование. Рост производительности СуперЭВМ позволяет выполнить «точные» расчеты

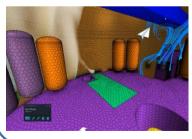


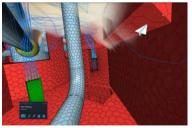
АСММ: снижение затрат на экспериментальные программы. Переход от «одномерных» стендов к «трехмерным»

ПСБ NuScale 1:3 линейный масштаб (1:27 - объем/мощность)



ЦД -Комплексный подход к разработке проекта

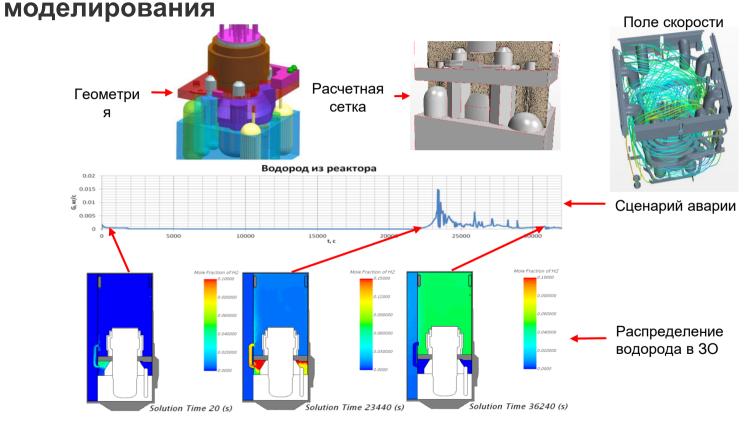




Автоматизированное комплексное «он-лайн» тестирование вариантов технических решений при проектировании

Цифровой двойник

VR: эффективный инструмент анализа 3D моделей



Автоматизированное построение расчетных моделей (Математическая моделе) (Мате

Водородная взрывобезопасность ACMM на примере РИТМ-200. Релокация ПКРВ на основе CFD-

АСММ: проблемные вопросы

- АСММ обладает всеми составляющими ядерной и радиационной опасности
- Разработка основанных на принципах внутренней самозащищенности и пассивных систем защиты ACMM с повышенными стандартами безопасности. Минимизация обслуживающего персонала.
- Подготовка научно-производственной базы для проведения стендовых испытаний и создания головных образцов энергоустановок.
- Разработка оборудования устойчивого к изменению частоты сети.
- Разумное повышение автономности АСММ при аварийных процессах.
- Устойчивость работы ACMM (длительная работа турбины на собственные нужды, 100% байпас турбины и т.д.). Упрощение системы управления.
- Освоение технологий и мобилизация промышленных мощностей для серийного производства АСММ.
- Цифровые двойники, нормативная база «заточена» на подходы прошлого тысячеления.
- Обеспечение физической защиты АСММ.

АСММ с химическим (водород) накопителем: увеличение степени автономности и повышение экологичности удалённых объектов

Для целей хранения энергии водород получают преимущественно методом электролиза.

КПД: 50-70%

Срок службы: не применимо

Мощность: от 80 кВт

Снижение ёмкости: отсутствует

Экологичность: экологически безопасно

Применение водородных накопителей энергии увеличивает экономическую эффективность АСММ.

Накопленный водород можно дополнительно использовать:

- Как экологически чистое топливо для транспорта на ВТЭ (при сгорании образуется вода);
- Для добавления в дизтопливо (улучшение свойств);
- Для получения (из водорода и азота воздуха) синтетического экологического топлива **аммиака** для прямой заправки транспорта с ДВС (при сгорании образуется вода и азот).
- Как резервного топлива для снабжения АСММ и Потребителя при плановом или аварийном останове
- Обеспечение топливом близлежащих объектов (**Исключение Северного завоза топлива**).

Основные требования к АСММ

- Возможность серийного производства реакторных установок.
- Модульный принцип компоновки при формировании необходимой мощности и возможность ее изменения в зависимости от потребностей целевой площадки.
- Полная или высокая степень заводской готовности к эксплуатации.
- Транспортабельность отдельных модулей или блоков.
- Минимизация объемов и стоимости строительно-монтажных работ.
- Автономность, надежность и устойчивость эксплуатации.
- Упрощение процедур снятия с эксплуатации, вывоз ОЯТ и РАО вместе с энергоустановкой.
- Существенное снижение экологических последствий для окружающей среды.
- Возможность работы в режиме когенерации, опреснения воды, выработки водорода.
- Прорыв в турбомашиностроении и в теплообменном оборудовании.

Пути Решения:

Минимальная зависимость от местных условий на этапе строительства

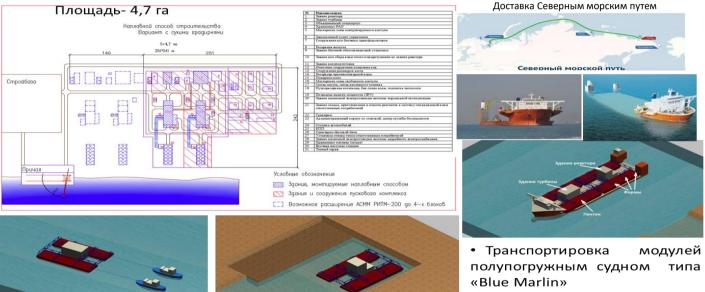
Достигается повышением предварительной готовности монтируемых конструкций и оборудования за счет переноса большей части сложных работ в стационарные заводские условия при выполнении этих работ квалифицированным персоналом. Монтаж укрупненными модулями заводский готовности:

а) Высший уровень готовности -использование наплавного метода строительства

История метода:

- С 1970 г ведется строительство буровых и нефтедобывающих платформ
- Строительство целлюлозного завода японской фирмой «1H1» в Бразилии на р. Амазонка 1976 г за 36 месяцев
- Установка блока главного здания приливной ГЭС в Кислой губе, 1960 г
- Строительство дамбы для защиты Ленинграда от наводнений 1984 г

б) Монтаж крупноразмерными модулями



История метода:

- Строительство Запорожской и Балаковской АЭС . 1981-86 г.
- Строительство АЭС Shimane-3, Япония, 2010
- Строительство АЭС AP1000 в Sanmen Китай, 2011

Предложения ВНИИАЭС. Отчет 2018 года «Техникоэкономические исследования по обоснованию конкурентоспособности АСММ с РУ Ритм-200 на российском и зарубежных рынках»

- Доставка к берегу с помощью приставных понтонов
- Доставляемые здания-модули: реакторные (2), турбинные (2), объединенный спецкорпус, хранилище РАО, блоки вентиляторных градирен (2). Отмечены на генплане синей штриховкой

точка зрения =

ПЕРСПЕКТИВНЫЕ НАПРАВЛЕНИЯ РАЗВИТИЯ АТОМНЫХ СТАНЦИЙ МАЛОЙ МОЩНОСТИ В РОССИИ

© 2023 г. С. Л. Соловьев^{a,*}, Д. Г. Зарюгин^{b,**}, С.Г. Калякин^{a,***}

^aAO "Всероссийский научно-исследовательский институт по эксплуатации атомных электростанций", Москва, Россия

ь Государственная корпорация по атомной энергии "Росатом", Москва, Россия

*E-mail: SLSoloviev@vniiaes.ru

**E-mail: DGZaryugin@rosatom.ru

***E-mail: SGKalvakin@vniiaes.ru

Поступила в редакцию 09.11.2022 г. После доработки 14.12.2022 г. Принята к публикации 26.12.2022 г.

Основные выводы

- 1. Востребованность АСММ и их конкурентоспособность во многих конкретных условиях их перспективного использования очевидны, о чем свидетельствует прогрессивно возрастающий интерес в мире к их разработке и применению. Необходима тесная работа с надзорным органом по опережающему обоснованию новых норм и правил открывающих путь масштабному наращиванию строительства АСММ с опорой на достигнутую референтность технологий АСММ в России.
- 2. Развитие ACMM не означает лишь очередное наращивание доли ядерных энергоисточников в топливно-энергетическом балансе. Создание ACMM связано с качественно новой философией применения атомной энергии и, прежде всего, с готовностью успешно интегрироваться в углероднонейтральную энергетику будущего, а также с разработкой технологии централизованного обращения с ОЯТ и РАО. ACMM как надежный источник энергоснабжения критически важной инфраструктуры.
- 3. Повышение конкурентоспособности АСММ возможно через внедрение технологий XXI века (аддитивные, цифровые, ИНС, и др). Оценка «предельных» ТЭХ для различных реакторных технологий. Экспертиза ЦД (полная). Успешное развитие и внедрение перспективных технологий требует тесной научной кооперации.

Спасибо за внимание

www.rosatom.ru