

НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ ПАО «МСЗ»

Электросталь, 17.09.2020 г.

«РОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

ИССЛЕДОВАНИЯ КОРАБЕЛЬНОГО ЯДЕРНОГО ТОПЛИВА В КРЫЛОВСКОМ ЦЕНТРЕ

Муратов О.Э., к.т.н., Общественный совет Госкорпорации «Росатом»

РЕАКТОРЫ АПЛ И АНК

Реактор	Топливо	Обогащение, %	Примечания
BM-A	UO ₂	21	
BM-4	UO ₂	21	Модификации: 4-1, 4A, 4Б, 4П, 4С, 4СГ
PM-1	UO ₂	90	ЖМТ
OK-550	UO ₂	90	ЖМТ, модификация БМ-40A
OK-650	UO ₂	45	Модификации: 650Б, 650Б, 650В, 650ВВ
KH-3	UO_2	55	

СУДОВОЕ ЯДЕРНОЕ ТОПЛИВО

Реактор	Топливо	Обогащение, %	Материал оболочки ТВЭЛа
OK-150	UO ₂	5-7	Сплав Zr
OK-900	Диспергированное	~40	Сталь
OK-900A	Диспергированное	>40	Сталь
КЛТ-40	Диспергированное	90	Сплав Zr
КЛТ-40М	Диспергированное	90	Сплав Zr
РУ «Саванна»	UO ₂	4-5	Сталь
РУ «Отто Ган»	UO ₂	3,5-6,6	Сталь
РУ «Муцу»	UO_2	3-5	Сталь
РИТМ-200	UO ₂	19,7	Сплав Zr

ЯДЕРНО-ФИЗИЧЕСКИЙ КОМПЛЕКС КГНЦ

Решение Минсудпрома СССР 1956 г. о создании объекта; Расположен на правом берегу Невы; Территория 2,7 га

ЯДЕРНО- И РАДИАЦИОННО-ОПАСНЫЕ УСТАНОВКИ

- Критический стенд МЭР;
- Критический стенд Г-1;
- Исследовательский ядерный реактор У-3;
- Подкритический стенд Р-1
- Нейтронный генератор НГ-150
- Хранилище ядерного топлива (высокообогащенное топливо вывезено в 2003 г.)

Все установки и хранилище расположены в зоне строгого режима (зона контролируемого доступа); Установки размещены в изолированных боксах, имеющих усиленную биологическую защиту

ЯДЕРНО-ФИЗИЧЕСКИЙ КОМПЛЕКС КГНЦ (СОВРЕМЕННОЕ СОСТОЯНИЕ)

Радиационно-опасный объект 2-ой категории (ОСПОРБ-2009/2010; Расположен на правом берегу Невы;

Территория 2,7 га;

Внешняя граница территории – граница СЗЗ объекта

КРИТИЧЕСКИЙ СТЕНД МЭР

- Критстенд МЭР прототип водо-водяного реактора;
- Мощность 200 Вт;
- Предназначен для исследований:
- различных уран-водных размножающих систем, имеющих ТВЭЛьную структуру
- нейтронно-физических характеристик различных топливных конфигураций;
- Исследуемые АЗ набирались из штатных или экспериментальных ТВС типа ВМ-А, ВМ-4, ОК-550;
- Годы эксплуатации 1964-1969

КРИТСТЕНД Г-1

- Критстенд Г-1 стенд для проведения комплекса испытаний по созданию высокотемпературного газоохлаждаемого реактора в составе корабельной атомной газотурбинной установки;
- Мощность 200 Вт;
- Проводились работы по исследованию физики активной зоны и нейтронно- физических характеристик активных зон с шаровыми микротвэлами;
- В 1984 г. впервые в СССР произведен физпуск критсборки с прототипом высокотемпературного газоохлаждаемого реактора;
- Годы эксплуатации 1984-1996

ПОДКРИТИЧЕСКИЙ СТЕНД Р-1

- Стенд Р-1 был создан для экспериментальных исследований размножающей нейтроны среды, обеспечивающей затухание цепной реакции при отсутствии посторонних источников нейтронов;
- Мощность 200 Вт;
- Эксперименты проводились с оксидным топливом обогащением 6,5- 90 % при различных водо-урановых отношениях;
- Годы эксплуатации 1961-1969

ИССЛЕДОВАТЕЛЬСКИЙ РЕАКТОР У-3

У-3 предназначен для:

- исследований взаимодействия ионизирующих излучений с веществами, материалами, изделиями и формированием радиационной обстановки в экспериментальных объемах;
- изучения биологической защиты корабельных ЯЭУ, радиационной стойкости элементов систем управления, процессов развития и ликвидации радиационных аварий на кораблях с ЯЭУ;
- Физпуск 13.12.1964 г.;
- Модернизации: 1979, 1988-1990, 2009-2014 гг.;
- Срок эксплуатации до 2024 г.

ХАРАКТЕРИСТИКИ РЕАКТОРА У-3

Характеристика	Значение	
Мощность, МВт(т)	0,05	
Теплоноситель/Замедлитель	вода	
Отражатель	Графит, вода	
Топливная композиция	UO ₂ +Mg с покрытием AI	
Обогащение топлива, %	10	
Выгорание топлива, %		
- среднее	2,2	
- максимальное	3,92	
Плотность потока нейтронов, см ⁻² ⋅c ⁻¹		
- тепловых	5,3*10 ¹¹	
- быстрых	1,24*10 ¹²	
Число ТВЭЛов, макс	468	
Конструкция ТВЭЛов	ЭК-10/У-3	

СОВРЕМЕННОЕ СОСТОЯНИЕ ЯУ

- Стенды МЭР, Г-1 и Р-1 в стадии вывода из эксплуатации, работы по выводу начаты в 2014 г.;
- Лицензия на эксплуатацию реактора У-3 действует до 2024 г.;
- •ФЦП «Обеспечение ЯРБ России на 2015-2020 гг. и перспективу до 2030 г.» предусмотрен вывод из эксплуатации реактора У-3

СПАСИБО ЗА ВНИМАНИЕ!