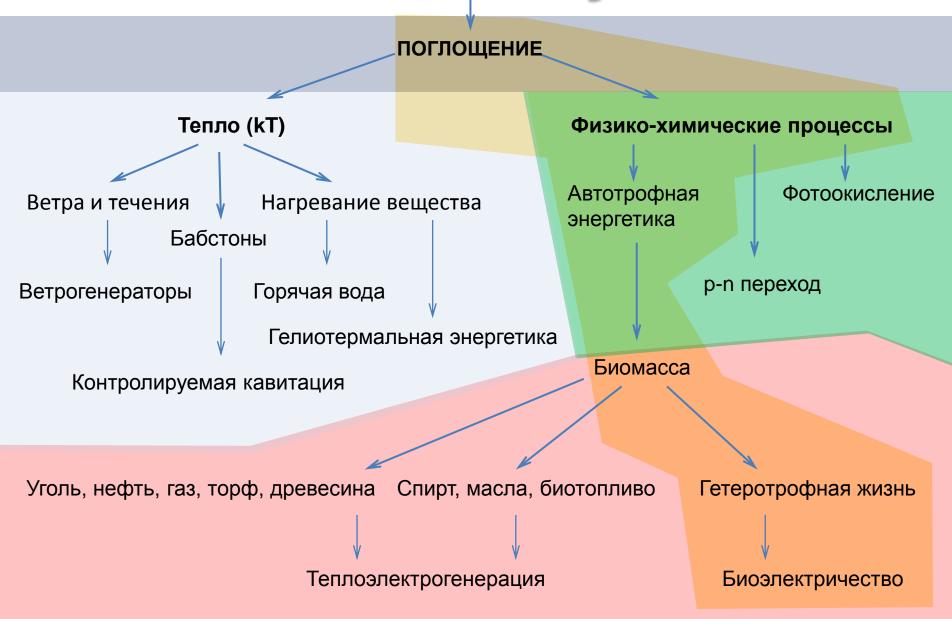


ТЕХНОЛОГИИ БИОЭНЕРГЕТИКИ

ОТДЕЛЕНИЕ БИОТЕХНОЛОГИЙ И БИОЭНЕРГЕТИКИ НИЦ «КУРЧАТОВСКИЙ ИНСТИТУТ»

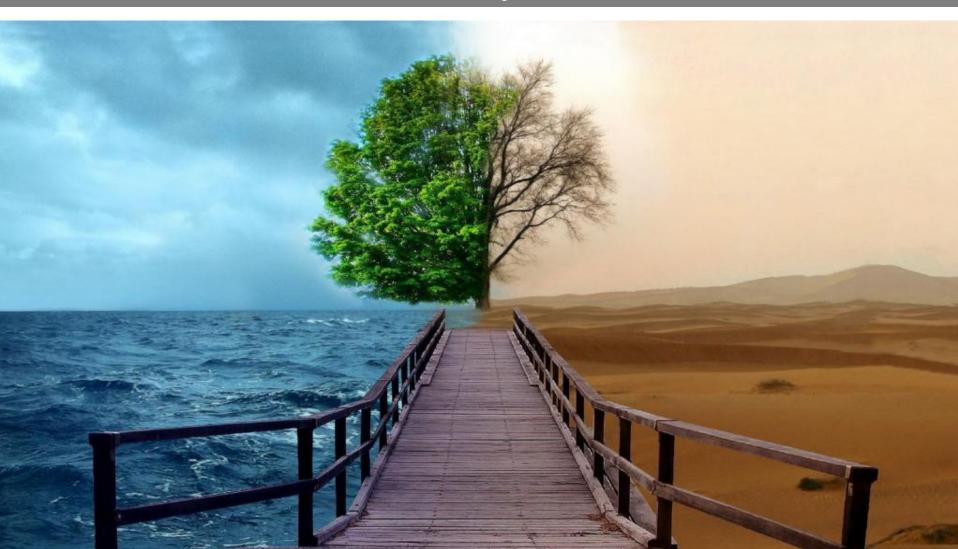

Москва, 2016

Земля обменивается энергией с окружающей средой, обмен веществом пренебрежимо мал.

Основной приток энергии на планету Земля идет от звезды Солнце, по большей части - в виде электромагнитного излучения (ЭМИ).


Солнечное излучение

ФОТОСИНТЕЗ – ОСНОВА ЖИЗНИ НА ЗЕМЛЕ


 $6 \text{ CO}_2 + 6 \text{ H}_2\text{O} \xrightarrow{hv} \text{C}_6\text{H}_{12}\text{O}_6 \text{ (глюкоза)} + 6 \text{ O}_2$

hv – энергия фотонов

БИОСФЕРА VS ТЕХНОСФЕРА

- Преобразование энергии в машинах, созданных человеком, идет с недостаточно высоким КПД, что приводит к образованию «бросового» тепла и негативным последствиям для экологии.
- → Именно в этих аспектах наблюдается принципиальное отличие энергетики живых систем от искусственных..

ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ ЖИВЫХ СИСТЕМ

- «Управляемые» насекомые и распределенные сенсоры перспективное направление в военной разведке.
- Пиковая мощность устройств, используемых в данных системах: от 100 мкВт до 1 мВт.
- → Требуется миниатюризация устройств и длительность функционирования.

БИОРОБОТЫ И РАСПРЕДЕЛЕННЫЕ СЕНСОРЫ

ИМПЛАНТИРУЕМЫЕ МЕДИЦИНСКИЕ УСТРОЙСТВА

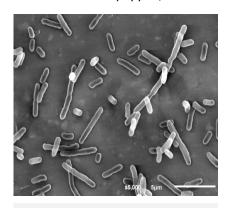
ПОЛУЧЕНИЕ ЭНЕРГИИ
ЗА СЧЕТ
МЕТАБОЛИЧЕСКИХ
ПРОЦЕССОВ В ЖИВЫХ
ОРГАНИЗМАХ

- Важнейшая задача современной робототехники снижение энергопотребления перспективными роботами.
- → Решение в области применения универсальных источников энергии, например, природоподобных систем, использующих биоресурсы в качестве топлива.

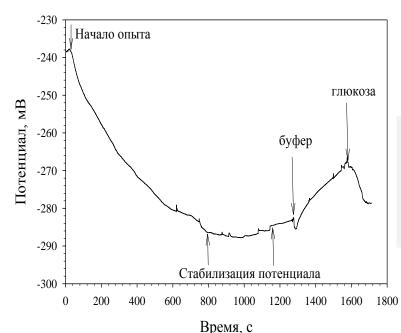
Пример: **Программа DARPA-BAA-14-09**.

- → Разработка устройств для **длительной имплантации** (до 3 лет) для реабилитации страдающих такими состояниями, как:
 - Посттравматический стресс;
 - Депрессия;
 - Пограничные расстройства личности;
 - Тревожные состояния;
 - Фибромиалгия / хроническая боль

ПЕРЕРАБОТКА
ОРГАНИЧЕСКИХ ОТХОДОВ
С ПОЛУЧЕНИМ
ЭЛЕКТРИЧЕСТВА


- Эффективная микробиологическая конверсия органических отходов с использованием микробного биотопливного элемента (МБТЭ).
- → Задачи:
- Подбор максимально эффективного сообщества микроорганизмов
- Масштабирование технологий в промышленных условиях с созданием установок для переработки значительных объемов органических отходов

БИОТОПЛИВНЫЕ ЭЛЕМЕНТЫ (БТЭ), ИМПЛАНТИРОВАННЫЕ В ЖИВОТНЫХ


Квазибезмедиаторная система

— использованы
водонерастворимые
медиаторы метилферроцен,
диметилферроцен

Микрофотография электрода с клетками Gluconobacter oxydans

- Разработан БТЭ, который был сопряжен с живым организмом и показал способность генерировать электрическую энергию без добавления внешнего топлива. Для окисления использована собственная глюкоза организма животного.
- Графит использован в качестве электродного материала. Клетки Gluconobacter oxydans выступали в качестве биокатализаторов.
- В течение нескольких дней БТЭ демонстрировал стабильную выработку электроэнергии. **Мощность до 50 мкВт; напряжение 260-280 мВ**
- → БТЭ электроды были имплантированы в травяную лягушку.
- → Площадь поверхности анода и катода 10 мм²

- Диаграмма генерации потенциала БТЭ, фиксированного в живом организме травяной лягушки.
- Оцененная величина концентрации глюкозы ~ 20 30 мМ.

ПОЛУЧЕНИЕ БИОДИЗЕЛЯ НА ОСНОВЕ ПЕРЕРАБОТКИ РАЗЛИЧНЫХ ВИДОВ БИОМАССЫ

→ Разработана технология получения биодизеля с'использованием рекомбинантных клеток дрожжей с иммобилизованными на клеточной стенке ферментами, что обеспечивает снижение производственных энергозатрат и капитальных издержек по сравнению с другими подходами. Технология позволяет получать биодизель из различных видов масел, включая липиды фототрофных микроорганизмов.

Схема получения рекомбинантного белкового комплекса и его экспозиция на поверхности клеточной стенки

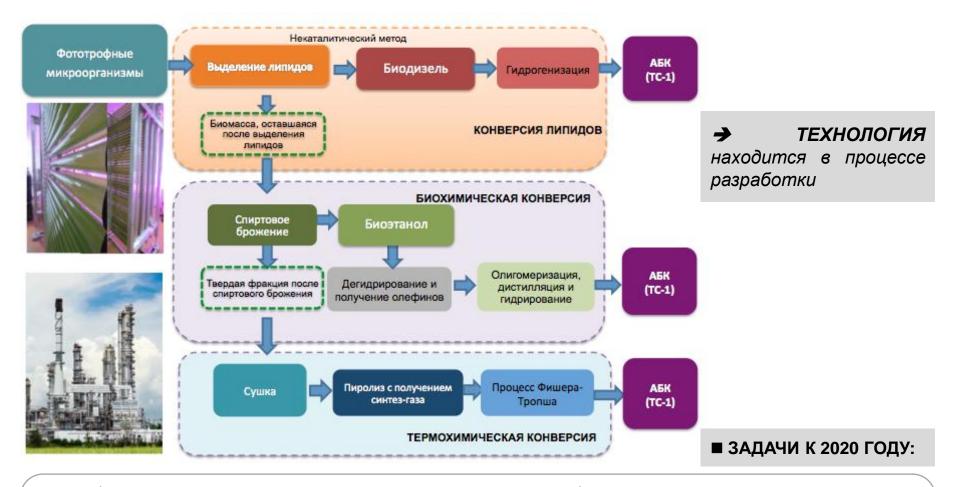
ЦИТОПЛАЗМА

Белок клеточной

КЛЕТОЧНАЯ

спой + хитин

ПЛАЗМАТИЧЕСКАЯ


высокопродуктивного культивирования в фотобиореакторе биомассы фото-трофных микроорганизмов (микроводорослей) и получения на ее основе полезных биопродуктов: биодизель 3-го поколения, «зеленая» химия, БАВ для фармацевтики, нутрицевтики, космецевтики.

технология

Разработана

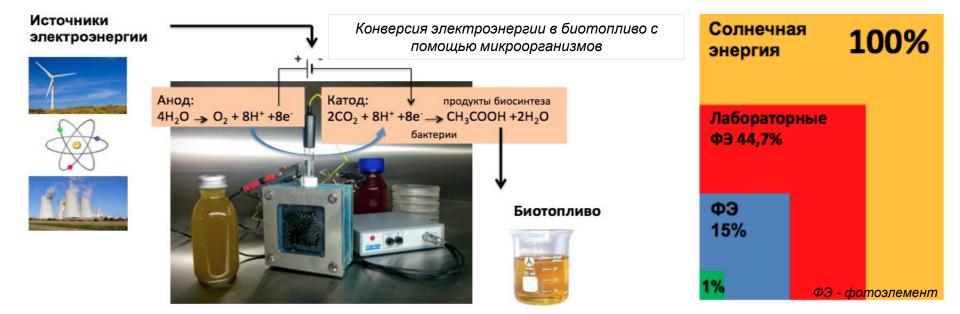
Культивирование биомассы микроводорослей в фотобиореакторе

ПОЛУЧЕНИЕ АВИАЦИОННОГО БИОТОПЛИВА НА ОСНОВЕ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ МИКРОВОДОРОСЛЕЙ

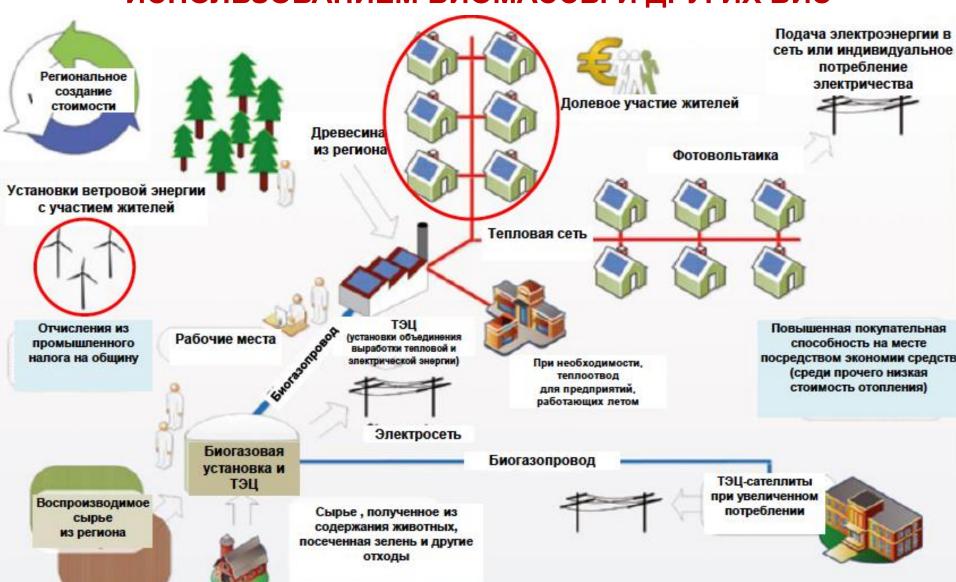
- Разработать и внедрить на уровне **пилотного производства** гибкую (модульную) интегральную технологию производства авиабиотоплива на основе переработки микроводорослей, культивируемых в фотобиореакторе.
- Адаптировать технологию к использованию различных видов возобновляемой биомассы с целью производства биотоплива для нужд гражданской и военной авиации
- Провести **демонстрационные испытания** с использованием авиационного биотоплива в смеси с традиционным топливом в соотношении 50:50

ПРЕИМУЩЕСТВА ИСПОЛЬЗОВАНИЯ ТЕХНОЛОГИИ ПОЛУЧЕНИЯ БИОТОПЛИВА НА ОСНОВЕ ПЕРЕРАБОТКИ БИОМАССЫ ИЗ ЛОКАЛЬНЫХ ИСТОЧНИКОВ ДЛЯ ВОЕННОГО ПРИМЕНЕНИЯ

- Приближение производства топлива к подразделениям передового базирования / театру военных действий
- Снижение количества транспортных конвоев с топливом. Снижение потерь при атаках на конвои.
- Повышение мобильности авианосных ударных групп
- Возможность переработки различных видов биомассы обеспечивает достаточную сырьевую базу
- Полезная и экологичная переработка органических (бытовых) отходов
- → Снижение потребления топлива на 1% высвобождает 6 тысяч солдат от охраны конвоев и экономит 6 миллиардов допларов в год (данные МО США)


ЭЛЕКТРОБИОСИНТЕЗ - НАИБОЛЕЕ ЭФФЕКТИВНЫЙ СПОСОБ КОНВЕРСИИ ЭЛЕКТРИЧЕСКОЙ И СОЛНЕЧНОЙ ЭНЕРГИИ В БИОТОПЛИВО

- CH₃COOH
 2 H₂O
 8e

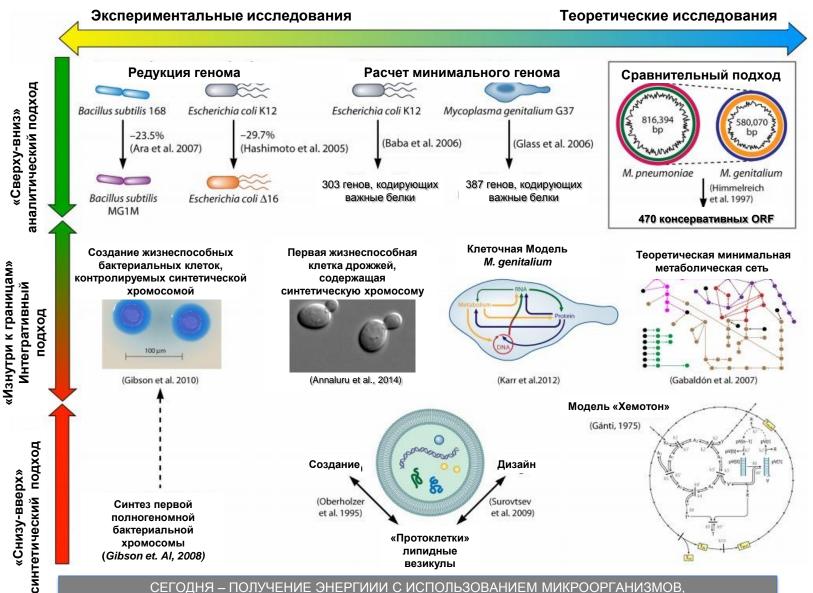

 Anode

 Cathode

 Membrane
- → Электробиосинтез прямое получение жидкого биотоплива с использованием микроорганизмов, способных к его синтезу на основе потребления электрического тока.
- Конверсия солнечной энергии через электробиосинтез в бутанол ~3%, через фотосинтез в этанол эффективность всего ~0.2%
- Комбинация микроорганизмов, способных к электробиосинтезу, с полупроводниковыми батареями позволяет добиться эффективности конверсии солнечного света, на порядок превосходящей эффективность фотосинтеза (10% и 1% соответственно).
- Технология электробиосинтеза может успешно использоваться в условиях, где эффективное протекание процесса фотосинтеза невозможно из-за неблагоприятного климата (например, в условиях Арктики) или отсутствует возможность выделения значительных площадей для роста фотосинтезирующих микроорганизмов (удаленные и труднодоступные районы, космос и т. д.).

МОДЕЛЬ БИОЭНЕРГЕТИЧЕСКОЙ ДЕРЕВНИ С КОМПЛЕКСНЫМ ИСПОЛЬЗОВАНИЕМ БИОМАССЫ И ДРУГИХ ВИЭ

ПРИМЕР ПРАКТИЧЕСКОГО ПРИМЕНЕНИЯ БИОТЕХНОЛОГИЙ В ГОРОДСКОМ ХОЗЯЙСТВЕ


■ «Биоинтеллектуальное» здание в Гамбурге. С освещаемой стороны здания расположено 129 фотобиореакторов.

ПРОЕКТ «ЗЕЛЕНЫЙ ГОРОД»: НАПРАВЛЕНИЯ ИССЛЕДОВАНИЙ, ПРОВОДИМЫЕ ОТДЕЛОМ БИОТЕХНОЛОГИЙ И БИОЭНЕРГЕТИКИ СОВМЕСТНО С ДРУГИМИ ПОДРАЗДЕЛЕНИЯМИ ККНБИКСТ И ККСНИ

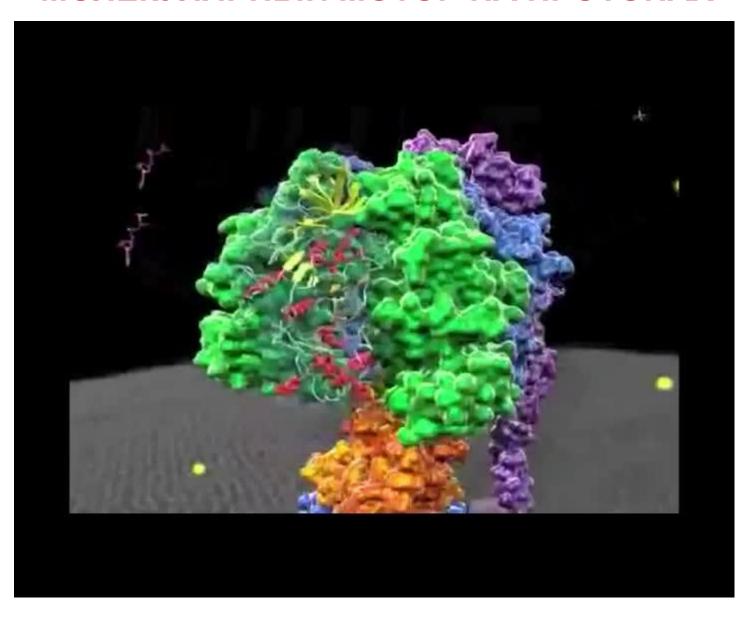
Направление исследований в рамках проекта	Подразделение соисполнитель	Выполняемые соисполнителем работы
Высокоэффективные фотобиореакторы	Отделение наноматериалов	Участие в работе по созданию новых оптических материалов
	Отдел геномики	Полногеномное сиквенирование новых потенциально промышленно интересных штаммов фототрофных микроорганизмов
	ЦОД u IT	Математическое моделирование процессов протекающих в фотобиореакторах
	КИСИ	Структурные исследования новых материалов и участие в изучении взаимодействия микроорганизмов с ними
Высокоэффективные фитотроны	Отделение наноматериалов	Участие в работе по созданию новых оптических материалов
	киси	Структурные исследования новых материалов и участие в изучении взаимодействия микроорганизмов с ними
Биологическая очистка ливневых вод	Отделение наноматериалов	Участие в разработке новых материалов носителей биомассы
	киси	Структурные исследования новых материалов и участие в изучении взаимодействия микроорганизмов с ними
Разработка биосенсоров опасных соединений	Отделение наноматериалов	Материалы для электродных биосенсоров
	Отделение наноэлектроники	Микрофлюидные системы для биосенсоров
Разработка микробных БТЭ для получения электроэнергии из насыщенных органикой сточных вод.	Отделение наноматериалов	Материалы для электродных биосенсоров
	Отделение наноэлектроники	Микрофлюидные системы для биосенсоров
Разработка умных систем контроля и управления для создаваемых технологических решений	ЦОД	Симуляция процессов с использованием разработанных математических моделей

СОЗДАНИЕ СИНТЕТИЧЕСКОЙ КЛЕТКИ – ПРИМЕР КОНВЕРГЕНЦИИ НАУК В БИОЛОГИИ

СЕГОДНЯ – ПОЛУЧЕНИЕ ЭНЕРГИИИ С ИСПОЛЬЗОВАНИЕМ МИКРООРГАНИЗМОВ, ЗАВТРА – НА ОСНОВЕ СОЗДАНИЯ СИНТЕТИЧЕСКОЙ КЛЕТКИ С ЗАДАННЫМИ СВОЙСТВАМИ

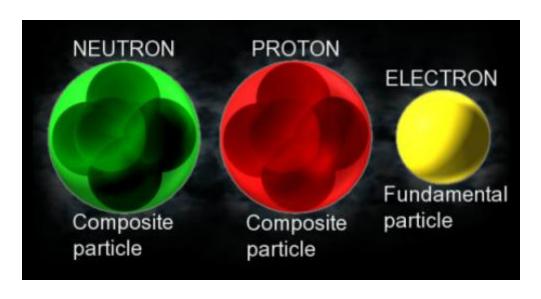
МОЛЕКУЛЯРНЫЕ МАШИНЫ – ОСНОВА ФУНКЦИОНИРОВАНИЯ ЖИВЫХ СИСТЕМ

→ Природные молекулярные машины – белки, способные конвертировать энергию, хранящуюся в АТФ или создаваемую за счет ионного градиента (мембранных преобразований с участием ферментных систем внешних стимулов неэлектрической природы в электрические сигналы), – в механическую работу


■ Виды:

- Цитоскелетные моторные белки (миозин, кинезин, динеин)
- Полимеризационные моторы (актин, микротрубочки, протеин RecA)
- Ионные помпы (Na-К насос и др.)
- Роторные моторы (АТФ-синтаза, бактериальный флагеллярный мотор)
- ДНК моторы (РНК-полимеразы, геликазы)

■ Функции:


- Сокращение волокон и мышц (актин-миозин)
- Движение клетки (актин-миозин)
- Деление клетки (актин-миозин)
- Разделение хромосом (микротрубочки, динеин)
- Транспорт (микротрубочки, кинезин/динеин)
- Бактериальный хемотаксис (флагеллярный мотор)
- Хранение энергии в АТФ (АТФ-синтаза)

МИТОХОНДРИАЛЬНАЯ АТФ-СИНТАЗА — МОЛЕКУЛЯРНЫЙ МОТОР НА ПРОТОНАХ

протон или электрон?

- Очевидно, что использование алгоритмики и энергии в суперкомпьютере в существенной мере отличается от механизмов функционирования живых систем. При этом, в созданной людьми технике основным носителем заряда является электрон, тогда как в биологических системах это протон частица, имеющая заряд, массу и спин.
- Передача информации в созданных человеком системах происходит по принципу 0 или 1, с помощью все тех же электронов или квантов света. В живых системах для передачи информации используются протоны и ионы, каждый из которых благодаря заряду, массе и спину может передавать гораздо большее количество информации за одно счетное событие.

БЛАГОДАРЮ ЗА ВНИМАНИЕ!

г. Москва

Тел. +7 (499) 196-7100 (доб. 3265)

E-mail: Vasilov_RG@nrcki.ru

www.nrcki.ru